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Abstract. In this paper we study the call admission control (CAC) problem for
a single link in multi-service loss networks. Each call is described by a reward
parameter representing the expected reward for carrying this call. The control ob-
jective is to maximize the reward from carried calls.The behavior of the link is
modeled as a Markov Decision Process (MDP). The standard link MDP model
assumes a Poisson call arrival process and exponentially distributed call holding
times. However, some services on the Internet, such as the World Wide Web ser-
vice, produce self-similar call arrival processes with heavy-tailed holding time
distributions. In this paper, we propose an extended link MDP model for self-
similar call arrivals and exponential holding time distributions. Numerical results
show that the reward increase due to admission of a call (denoted link net-gain)
depends on the time offset between the latest arrival and the latest departure.

1 Introduction

We consider the problem of Call Admission Control (CAC) on a single link in multi-
service loss networks such as ATM and STM networks, and IP networks, provided they
are extended with resource reservation capabilities. The objective is to maximize the
revenue from carried calls, while meeting constraints on the Quality of Service (QoS)
and Grade of Service (GoS) on the packet and call level, respectively.

This paper deals with a particular form of state-dependent CAC on the link level,
where the behavior of the link is formulated as Markov Decision Process (MDP) [9, 3,
8] . A MDP is a controlled Markov process, where the set of state transitions from the
current Markov state to other Markov states depends on the decision or action taken
by the controller in the current state. In the MDP framework, each call is described by
a expected reward parameter and the objective is to maximize the reward from carried
calls.

The standard link MDP model assumes Poisson call arrival processes and expo-
nentially distributed call holding times. The Poisson call arrival model is accurate for
session arrivals for many service types, such as telephony, World Wide Web (WWW),
FTP and TELNET. However, for TCP connections invoked within the WWW sessions,
the Poisson model is an inadequate model. Based on real measurements of the TCP
connection arrival process within WWW sessions, Anja Feldmann has proposed a cer-
tain non-Poisson renewal call arrival process model [5]. This process has inter-arrival
times that follow a Weibull distribution in contrast to the Poisson process which has
exponentially distributed inter-arrival times. We follow the convention by Anja Feld-
mann and refer to this new arrival process as self-similar, since it exhibits structural



similarities across a wide range of time scales. Measurements have also shown that the
complementary distribution of holding times of TCP connections within WWW ses-
sions decays slower than exponentially [2].

In case of a Poisson arrival process, and exponential service process, the state tran-
sition probabilities, which are part of the MDP model, become easy to formulate. This
is due to the memoryless property of the exponential distribution: the probability of the
next event being an arrival/departure is independent of the time offset between the latest
arrival and the latest departure. This is not the case if we replace the Poisson process
with a non-Poisson process such as the above self-similar process: the probability of
the next event being an arrival/departure now becomes dependent on the time between
the latest arrival and the latest departure.

Generally, when a Poisson arrival process is multiplexed with a Markov (exponen-
tial) service process, the resulting superposed process is a renewal process. In this case,
the controlled sequence of link states forms a semi-Markov decision process (SMDP)
[9]. However, when a renewal arrival process is multiplexed with a Markov (exponen-
tial) service process, the resulting superposed process is not renewal. In order to for-
mulate a SMDP it is necessary to introduce new state variables, which contains enough
information for accurate prediction of future state vectors (resulting in preservation of
the Markov property).

This paper proposes an extended link MDP model for self-similar call arrivals and
exponential holding time distributions. We limit ourselves to exponential holding time
distributions since this case is easier to handle than the case with heavy-tailed holding
time distributions. Moreover, we consider only the one call category case. However,
the model can easily be generalized to cope with multiple categories, albeit with large
computational complexity. See [7] for a full version of this paper.

The paper is organized as follows. Section 2 formulates the CAC problem in terms
of offered traffic and optimization objective. Section 3 describes different models of the
call arrival process and call holding time distribution. Section 4 describes the link MDP
model for self-similar call arrivals. Section 5 evaluates the standard and extended link
MDP model using numerical/simulation techniques. Finally, Section 6 concludes the
paper.

2 Problem Formulation

We consider a single communication link with capacity
�

Mbps. The link is offered
traffic from � categories which are, for sake of simplicity, assumed to be subject to
deterministic multiplexing. The � -th category, �������
	���
�������
���� , is characterized by
the following:

– Peak bandwidth requirement ��� [Mbps],
– General call arrival process 	������ with two special cases:� Poisson process with average arrival rate ��� [s �! ],� Self-similar process characterized by Weibull parameters "#� and $�� ,
– Exponential service process 	�%&��� with mean 1/ '(� [s],
– Reward parameter )��*�,+.-#
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The task is to find an optimal link CAC policy 354 which maximizes the mean reward
from the link, defined as 6 +.3(17�98 �.:<; )�� �=� (1)

where �=� denotes the average category- � acceptance rate.

3 Modelling of Call Traffic

3.1 Call arrival process

Since the days of Erlang the Poisson model has commonly been used to describe the
random arrivals of call requests to the OD pairs of a telephone network. Although the
Poisson model serves its purpose in telephone networks, it lacks descriptive power in
the case of Internet where a substantial portion of traffic is World Wide Web (WWW)
connections transported by TCP. The nature of the WWW service is different from the
telephone service; A person using the WWW service is more likely to initiate additional
downloads after the first download. A person using the telephone service is more likely
to initiate independent calls.

Measurements on real WWW connection arrivals in the Internet has revealed that
the arrival process shows burstiness over many time scales, ranging from seconds to
hours. Anja Feldmann [5, 6] argues that this traffic is self-similar. The degree of bursti-
ness over different time scales or the extend of self-similarity can be expressed with
just one single parameter, the Hurst parameter. For self-similar processes its value is
between 0.5 and 1 and the degree of self-similarity increases as the Hurst parameter ap-
proaches 1. Together with the Poisson nature of WWW session arrivals, the empirically
observed property that the number of TCP connections per WWW session is heavy
tailed with indications of infinite variance provides a mathematical explanation for the
self-similar nature of WAN traffic at the TCP level.

Anja Feldmann has observed that the WWW connection arrivals can be accurately
modeled by a renewal process with inter-arrival times that follow a Weibull distribution,�>+@?A1��CB�+.�D�FEG?A1H�I�DJLK � +NMO 1AP . Recall that the Poisson process has exponentially
distributed inter-arrival times: �Q+@?A17�9B�+.���QE2?A1R�
�SJTK �!U�V .

The exponential probability density function (pdf) is"�+@?A1R�IW �Q+@?A1W ? �XWW ? +A�YJTK �!U�V 1R�Z�#K �!U�V0[ (2)

The mean inter-arrival time for the Poisson process is:

\^] �D��_��a`Lbc ?d"�+@?A1 W ?7�Z`Lbc ?A�=K ��U�V W ?R� �� [ (3)

The Weibull pdf is



"�+.?A17�eW �>+.?A1W ? �fWW ? +A�SJTK � +<MO 1 P 1R� $"2g ?"ihHj �! K � +NMO 1 P [ (4)

The mean inter-arrival time for the Weibull-based process is:

\^] �H��_��a`2bc ?d"�+.?A1 W ?R�Z`Lbc ? $"kg ?"ih j �! K � + MO 1AP W ?R�l"nmQ+A��o �$ 1 [ (5)

3.2 Call holding time distribution

The traditional model of call holding times %&� is the (negative) exponential distribution
with rate parameter ' : %p+@?A1�� P +.%��TEq?A1>�r��J exp +dJS'!?A1 . The exponential distri-
bution match the actual holding times in case of telephony among other services. The
associated holding time pdf is�s+@?A17�tW %u+@?A1W ? �fWW ? +d�SJ,K ��vwV 17�x'yK ��vwV0[ (6)

The distribution function for the inter-departure times for a group of z calls is given
by %D{!+@?A1|� P +.% {� EC?A1&�}��J exp +dJSz!'!?A1 . Similarly, the pdf for the inter-departure
times for the group of z calls is:�~{!+.?A1R� W %H{!+.?A1W ? � WW ? +A�SJTK � { vwV 1R�lz!'yK ��vwV [ (7)

However, for TCP connections invoked within WWW sessions the holding time is
more heavy tailed [2]. The reason is that the distribution of WWW document sizes on
the Internet is heavy tailed. A distribution is said to be heavy tailed if Prob

] ���l� _5�$ ��� with � � - . Intuitively, a heavy-tailed holding time distribution means that if the
call has not been completed for some time it becomes more and more unlikely that it
will be completed soon. The Pareto distribution is a popular choice for the heavy tailed
distribution. It has the following form: %p+.?A1R� P +�% � Ek?A1R�G�SJ���� V�� � 
�" � - .
4 Link Model for Self-similar Call Arrivals: One Category Case

In this section we formulate the link MDP model for the one category ( �}�}� ) case,
assuming a general renewal call arrival process and an exponential holding time distri-
bution. Let ���}+@z*
�K�
d��1 denote the current state of the MDP, and let �l��+@�T
���
��&1
denote the MDP state which is entered after an event in the current state. The variablesz and � denote link state representing the number of active calls from the single cate-
gory. The variables K and � denote the event type (ARRIVAL/DEPARTURE) of the latest
event. The variables � and � denote the (probability mass) offset between an event of
type K and � , respectively, and the latest complementary event. The complement of an
ARRIVAL event is a DEPARTURE event and vice versa.

The state space
�

is given by:



� ��	����
+@z*
�K�
A��1��Nz��9-�
��R������
�� ��� �0����K��T	 ARRIVAL,DEPARTURE ������l-�
��R�����!
��|�pJ2�<��
 (8)

where
�

denotes the link capacity and � denotes the call’s bandwidth requirement.
The action space is given by �9�G	�����	w-�
��N�<�5
 (9)

where �Q�Z- denotes call rejection and �Q� � denotes call acceptance. The permissible
action space is a state-dependent subset of � :�Q+@�(1���	��¡�����N�>�l- if z^o�� � � ��� ����� [ (10)

The state transition probabilities are given by:

¢�£�¤ +@��17�
¥¦¦¦¦¦¦¦¦¦§ ¦¦¦¦¦¦¦¦¦¨
© V@ªs«(¬d­d«(®5ªV ª «y¬ ­ �<"�+@?A1�¯°+.?A1 W ?~
 ����zpo���
�a�
�Y±d²�+@³i
d��1´
A³��µ	�-�
��R������
��|�pJ2�<�© V ª «(¬ ­ «(® ªV@ªs«y¬d­ +d�SJT��1A"�+.?A1A¯i+@?A1 W ?~
n����z*
�a�
� ±d² +@³i
d��1´
A³��µ	�-�
��R������
�� � J2�<�© V@ªs«y¶A­d«(®5ªV@ªs«!¶A­ � { +@?A1A·¸+@?A1 W ?~
 ����zFJ2��
�a�
�Y±d²�+@³i
d��1´
A³��µ	�-�
��R������
��|�pJ2�<�- otherwise 


where

¯°+.?A17� ] �SJ,%H{y+.?!o�¹�±´1º_ � ] �SJ,�>+¼»´±�1º_¼
 (11)·¸+.?A17� ] �SJT�Q+@?(o2»´±´1½_ � ] �SJ,%H{!+.¹�±´1½_½
 (12)

where

¹ ± �q¾|¿ � +.Ks1~
�KD� ARRIVAL-#
 KD� DEPARTURE 
 (13)

» ± �e¾>¿ � +�Kw1´
<KD� DEPARTURE-�
 KD� ARRIVAL 
 (14)

and

¿ � +.Ks1R�tÀ  { v ] J log +d�ÁJ�� � �|��1½_�
lK�� ARRIVAL" ] J log +d�SJµ� � �>��1½_  �Â j 
<K�� DEPARTURE [ (15)



Note that the time offset ¿ �i+�Kw1 is an increasing function of the probability mass
offset � . Moreover, in the case of exponentially distributed inter-arrival times (Poisson)
and exponentially distributed service times, the memoryless property of the exponential
distribution allow us to put ¹ ± �Z» ± ��- .

The offset � in the new state � is given by

� ±d² +@³i
d��1R� ¥¦¦§ ¦¦¨ �@% { +@?dÃ�o ¿ Ãn1d� � ��
 KD� ARRIVAL 
��u� DEPARTURE�@�Q+@?dÃ�o ¿ ÃÄ1d� � ��
 KD� DEPARTURE 
0�Å� ARRIVAL�@%D{!+@? Ã o ¿ Ã o ¿ �5+.Ks1A1A�|�=��
�KD�9�F� ARRIVAL�@�Q+@? Ã o ¿ Ã o ¿ �i+�Ks1A1d�>����
ZKD�9�F� DEPARTURE [
The expected sojourn time Æy+@�(1 in state � is determined asÆy+@�(1��Z`kb¬ ­ +@?5J,»�±´1d"�+@?A1�¯i+@?A1 W ?°ok`Lb¶ ­ +.?iJT¹�±´1��~{!+@?A1A·¸+@?A1 W ? [ (16)

The expected immediate reward
6 +@�(1 in state � is given by:6 +@�(1R�l)R`2b¶ ­ �~{!+@?A1A·¸+@?A1 W ?~
 (17)

where ) denotes the reward parameter for the single category.
We now describe one way to determine the ¿ Ã values used in the expression for

the state transition probabilities. For modelling convenience we replace the self-similar
arrival process with a Poisson process. The quality of the final solution is not critically
dependent on the ¿ Ã values; some deviation from the ¿ Ã values based on the self-
similar arrival process is tolerated.

The probability of a call arrival within an infinite interval is:

B�+ arrival in +�-�
~/L1�1R�a` bc �=K �°Ç U�« { v�ÈÉV W ?R�9�#Æy+@z(1´
 (18)

where Æy+@z(1 is the mean sojourn time in link state z :Æy+@z(1�� ] �Qo�z!'�_ �y [ (19)

The probability for an arrival (assuming the offset is zero) during
] ?�Ã=
A?dÃHo ¿ ÃN_ can

be written:

B�+ arrival in +@?dÃ=
A?dÃ�o ¿ ÃÄ1A1R� ` V ª «°® ªV@ª �=K �(Ç U�« { v�ÈÉV W ?R���Æy+.z(1dK �=V@ªNÂ�Ê<Ë {NÌ ] �SJTK ��®5ªsÂ�Ê<Ë {NÌ _ (20)

Let us choose ¿ Ã such that this probability becomes � � �Q� times the probability of
arrival within an infinite interval. This gives:



¿ Ã �
JSÆy+@z(1 log +d�YJ �� � K V@ªwÂ�Ê<Ë {NÌ 1 [ (21)

In order to determine the state transition probabilities, expected sojourn times, and
expected immediate rewards, we use numerical integration, e.g. the Simpson’s method.

5 Numerical Results

5.1 Considered link models

The performance analysis is performed for the single link case. Two MDP models for
CAC are compared numerically:

– MDP – standard link model assuming Poisson call arrivals [4],
– MDP+ – extended link model assuming self-similar call arrivals according to Sec-

tion 4.

5.2 Examples and results

The simulation scenario is described in Table 1. The traffic parameters are chosen such
that the link load becomes moderate. Each measurement period is based on ÍÁÎu��-ÄÏ call
events.

link capacity Ð [Mbps] 24
#traffic categories Ñ 1
call arrival rate Ò [ Ó�Ô�Õ ] 20
mean holding time Ö´×´Ø [s] 1
bandwidth Ù [Mbps] 1
link traffic [Mbps*Erlang] 20
reward parameter Ú 1
#offset values ÛYÜ 10

Table 1. Description of simulation scenario

Two types of call arrival models are used the the simulations: the Poisson model
(po) and the self-similar model (ss). The mean Poisson arrival rate � and the mean
holding time � � ' are first chosen. The self-similar call arrival process is chosen as
follows. First, the Weibull parameter $ is set to $F��- [ÉÝ which is plausible value for
real WWW connection arrivals [5]. The choice $T�Þ- [ Ý gives a Hurst parameter ofß �
- [ Ý�Ý . Second, the Weibull parameter " is set to "��  à Ëá A«HâP Ì U which gives equal

mean inter-arrival time for the Poisson and self-similar process.
Table 2 shows the reward loss as an average over ã �äÍ<- simulation runs. The

reward loss å in each simulation run is computed as



åæ�
�SJ 6 � 6 
 (22)

where
6 �aç �@:<; ) � � � and

6 �9ç �.:<; ) � � � denotes the carried and offered reward rate,
respectively.

The average reward loss is computed as åe�  è ç è�êé  å � , where å � denotes the
reward loss for simulation � . For assessment of the accuracy of the simulation results
we present values of the standard deviation of the reward loss in the same table. We
compute the standard deviation as:

ë � ìííî �ãfJ2� è8 �ïé  +�å � J å�1Að [ (23)

Figures 1 and 2 show the relative value function and the link net-gain function,
respectively, for the standard MDP model assuming Poisson and self-similar call arrival
processes.

Figures 3 – 6 show the relative values in different states +.z*
�K�
d��1 for the extended
link model (MDP+) assuming Poisson call arrival process.

Figures 7 – 10 show the relative values in different states +@z*
�K�
A��1 for the extended
link model (MDP+) assuming self-similar call arrival process.

Reward loss in % (sdev)
MDP po 6.61 (0.06)
MDP ss 15.37 (0.10)
MDP+ po 6.61 (0.06)
MDP+ ss 15.32 (0.13)

Table 2. Reward loss for the standard (MDP) and the extended (MDP+) methods for Poisson and
self-similar call arrivals, respectively.

5.3 Results Analysis

From Table 2 the following conclusions are drawn:

– Although the self-similar traffic has the same mean inter-arrival time as the Pois-
son traffic, the reward loss for self-similar traffic is significantly higher since the
burstiness of this arrival process is larger.

– The standard (MDP) and extended (MDP+) models yield similar reward loss since
both CAC policies always accepts a new call as long as there is sufficient free
capacity on the link (complete sharing).

From the graphs in Figures 1 and 2 the following conclusions are drawn:

– The relative value curve and the gain curve are identical for Poisson and self-similar
call arrivals, due to the particular choice of �(
�" and $ parameters.



– The gain is maximal for zñ�l- and drops as z increases.

From the graphs in Figures 3 – 6, which considers Poisson call arrivals, the follow-
ing conclusions are drawn:

– Due to the memoryless property of the exponential inter-arrival and service distri-
bution, the relative values are constant for different events K and offsets � .

– The relative value ò�+.z*
A3(1 increases as the link state z increases.

From the graphs in Figures 7 – 10, which considers self-similar call arrivals, the
following conclusions are drawn:

– The relative values ò�+@z*
�K�
d�Y
A3(1 depends on the link state z , event type K and offset
value � , besides the CAC policy 3 .

– The relative value ò�+.z*
�K�
d�Y
�3(1 is highest for ���l- and drops as � increases.
– An offset � of zero is equivalent to a memoryless (Poisson) situation.
– Self-similar arrival processes give rise to offsets � larger than zero, which yield

smaller relative values (expected reward) and therefore larger reward loss, see Table
2.

– The relative value ò�+.z*
�K�
d�Y
�3(1 for KD� ARRIVAL drops linearly as � increases.
– The relative value ò�+@z*
�K�
A�Y
A3(1 for K>� DEPARTURE drops faster than linearly as� increases.
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6 Conclusion

In this paper we formulated the CAC problem for a single link operating in loss mode.
In this formulation each call category is characterized by its reward parameter defining
the expected reward for carrying a call from this category. Such a formulation allows to
apply Markov Decision Process (MDP) theory to solve the problem.

Traditionally, the MDP approach to CAC and routing has assumed Poisson call
arrivals and exponentially distributed call holding times. These assumptions are rea-
sonable for telephone calls. However, they become inaccurate for the TCP connections
invoked within the World Wide Web (WWW) Internet service. In particular, measure-
ments on real Internet traffic have revealed that the TCP connection arrival process is
self-similar and that TCP connection holding time distribution is more heavy tailed than
the standard exponential distribution.

This paper proposes an extended link MDP model for self-similar call arrivals and
exponential holding time distributions. We limit ourselves to exponential holding time
distributions since this case is easier to handle than the case with heavy-tailed holding
time distributions. Moreover, we consider only the one call category case. Numerical
results show that the reward increase due to admission of a call (denoted link net-gain)
depends on the time offset between the latest arrival and the latest departure.

Future work includes modelling of MDP-based CAC and routing on the network
level, assuming self-similar call arrivals to the OD pairs.
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