

 i

Karlstads universitet 651 88 Karlstad

Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

FAK EKI

Margaret Mburu and Robert Josefson

Conversion of a Visual Basic 6

Application to Visual Basic .NET

Subject

 C-level thesis

Date/Term: 08-06-03

Supervisor: Donald F. Ross

Examiner: Martin Blom

Serial Number: C2008:06

 ii

Conversion of a Visual Basic 6 Application

to Visual Basic .NET

Margaret Mburu and Robert Josefson

 iii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not our own work has been identified and no material is included for which

a degree has previously been conferred.

Approved 080603

Advisor: Donald F. Ross

Examiner: Martin Blom

 iv

Abstract

This dissertation describes the process of converting an application from Visual Basic to a

.NET programming language. This work was carried out on behalf of The Prevas Company

[0] based in Karlstad, Sweden. Prevas provides IT solutions and industrial systems for several

world leading companies such as Ericsson, Nokia, Siemens and many others. The objective

behind the conversion of this application was to facilitate a more compatible and flexible

option suitable for the other products using the .NET environment. In addition, Prevas felt

that the Visual Basic 6 environment had grown rather old and outdated. The task was

therefore to convert the source code from Visual basic 6 to .NET language and to determine

the most efficient method for the conversion.

The outcome of this project was to achieve a fully converted application using the .NET

framework with its original functionality intact.

 v

Contents

1 Introduction ...1

1.1 Document Outline ..2

2 Background ..3

2.1 Visual Basic 6.0 ..3

2.2 Visual Basic 6.0 Features ..3

2.3 .NET Framework ..4

2.3.1 Common Language Runtime

2.3.2 Compilation

2.3.3 .NET Framework - Class Library

2.3.4 Other .NET Related Languages

2.3.5 C# (SHARP)

2.4 Differences between Visual Basic 6 and Visual Basic.NET7

2.4.1 Multithreading

2.4.2 Object Oriented Feature

2.4.3 Console Applications

2.4.4 Memory Management

2.4.5 Runtime Environment

2.4.6 Data Types and Properties

2.4.7 Declaration and Initialization of Variables

2.4.8 Structures and User – Defined Types

2.4.9 Arrays

2.4.10 Fixed Length Strings

2.4.11 Structured Exception Handling

2.4.12 Compatibility

2.4.13 Security

2.4.14 Forms

3 Conversion Process .. 15

3.1 Language Decision: .. 16

3.2 Before the Conversion .. 16

3.3 Results .. 17

3.4 Compile Errors ... 17

3.4.1 Property was not Upgraded (Compile error).

3.4.2 Declaring a parameter 'As Any' is not supported

3.4.3 Unable to determine which constant to upgrade vbNormal to

3.4.4 Number of Indices Exceeds the Number of Dimensions of the Indexed Array

3.4.5 Other Possible Compile Errors

 vi

3.5 Upgrade Warnings: ... 26

3.5.1 Event may Fire when Form is initialized

3.5.2 Structure may require Marshalling Attributes to be passed as an Argument in this Declare

Statement.

3.5.3 The Lower Bounds of a Collection has Changed

3.5.4 Other Possible Upgrade Warnings

3.5.5 Could not Resolve Default Property

3.6 Design Errors ... 32

3.6.1 Property not Upgraded (Design error)

3.6.2 Other Possible Design Errors

3.7 Changing caching from string to XML ... 35

3.7.1 XML (Extensible Markup Language)

3.8 Issues Discovered During Testing ... 37

3.8.1 VB.NET Registry Changes

3.9 Upgrade Summary .. 42

4 Results .. 44

4.1 Upgrade Checklist .. 44

4.1.1 Checklist

4.1.2 Before the Upgrade (Checklist: steps 1 and 2)

4.1.3 Application Version 2 (Checklist: step 3)

4.1.4 Test of application version 2 (Checklist: step 5)

4.1.5 Test of Application Version 3 (Checklist: steps 6, 7 and 8)

4.2 Project Overview .. 48

4.2.1 Knowledge

4.2.2 Software Tools

4.2.3 Planning

4.2.4 Project Summary

4.3 Project Evaluation .. 49

4.3.1 What was learned

4.3.2 Evaluation

5 Future Conversions ... 51

5.1 Approach .. 51

5.1.1 Partial Upgrade

5.1.2 Complete Upgrade

5.1.3 Complete Re-write

5.2 Preparations .. 52

5.3 Changes .. 53

5.3.1 Fixing Data Declaration

5.3.2 Obsolete Keywords

5.4 Tools .. 54

5.4.1 Migration Cost Estimation Tool

5.4.2 Project analyzer and Compatibility Check Tool

5.5 Conclusions .. 55

References ... 56

A Glossary ... 59

 vii

List of Figures

Figure 2-1 The Common Language Runtime Environment[2] ..5

Figure 2-2 The Common Language Infrastructure[2] ...6

Figure 2-3 Example Win32 Application in VB.NET ..9

Figure 2-4 Example of Variant Data Type ... 10

Figure 2-5 Variable declaration example .. 11

Figure 2-6 Initialization and declaration in VB.NET .. 11

Figure 2-7 VB6 Structure ... 12

Figure 2-8 VB.NET Structure .. 12

Figure 2-9 VB.NET Array ... 13

Figure 3-1 WinHelp function ... 18

Figure 3-2 App.PrevInstance replacement .. 19

Figure 3-3 The GetPrivateProfileString Function Declaration .. 20

Figure 3-4 Example function with SQL Attributes ... 21

Figure 3-5 Example of Code with the vbNormal Constant ... 22

Figure 3-6 Declaration of a multidimensional array ... 24

Figure 3-7 Life cycle of OLE VB6 drag and drop operation ... 25

Figure 3-8 Subroutine not using IsInitializing .. 28

Figure 3-9 Subroutine using IsInitializing .. 28

Figure 3-10 VB6 code without marshalling .. 29

Figure 3-11 Visual Basic .NET Code with Marshalling .. 29

Figure 3-12 Modified code .. 29

Figure 3-13 Array Declaration ... 29

Figure 3-14 Imagelist ... 30

Figure 3-15VB.NET code with upgrade warnings .. 31

Figure 3-16 VB.Net code: with no upgrade warning .. 32

Figure 3-17 New Behaviour ... 32

Figure 3-18 Design errors .. 33

 viii

Figure 3-19 Reptile Treeview .. 35

Figure 3-20 XML Tags .. 36

Figure 3-21 XML entry with attributes .. 36

Figure 3-22 XML Tree .. 37

Figure 3-23 Caching as string .. 37

Figure 3-24 XML based caching .. 37

Figure 3-25 Buttons hidden behind Tab ... 38

Figure 3-26 Windows registry ... 39

Figure 3-27 RegQueryValueEx .. 40

Figure 3-28 RegCreateKeyEx function .. 40

Figure 3-29 RegSetValueEx .. 41

Figure 3-30 VB.NET read from registry .. 41

Figure 3-31 VB.NET update registry key values .. 42

Figure 3-32 Upgrade issues .. 43

Figure 4-1 Process answer function.. 45

 ix

List of tables

Table 2-1 Differences between VB6 and VB.NET ... 11

 1

1 Introduction

Upgrading an application from its current environment into a new or different environment

involves converting the source code into another language. Basically, the new environment

may provide new, different, improved or enhanced features which add value to the upgraded

or converted application. Microsoft’s discontinuation of support for Visual Basic 6 and

introduction of Visual Basic.NET with new and different features resulted in most Visual

Basic developers and organizations opting to either retain or convert their existing VB6

applications to VB.NET. However, the choice of which option to take depends on various

factors as seen later in this report. Considering that most companies have invested time and

money in development of VB6 applications there is no doubt that there has been some

hesitation in adapting these applications to new .NET environment. However, in order to

meet the demands of software development requirements and to take advantage of the

benefits offered by the new features most companies and developers in the recent past have

opted to convert their existing applications to .NET framework. An example of those

companies that have opted to convert their applications to a .NET framework is Prevas.

Prevas is a company developing intelligence in products and industrial systems for several

international companies such as Ericsson, Siemens, Nokia and many others. Prevas maintains

an extensive library of technology platforms within technologies such as embedded

processing, wired/wireless communication, signal processing and graphical user interfaces.

Since it was founded over 20 years ago, Prevas has successfully delivered over 2000 different

products. Prevas provides clients with services customized to meet their demands ranging

from in-sourcing to complete outsourcing of the client’s projects [0].

Our task entailed the conversion of a VB6 application called Reptile to the VB.NET

environment and documenting the conversion process. Reptile is an application used for

troubleshooting and repair actions for electronic components, with connection to two

databases called QSP and Testnet. Fault reports are entered into the QSP database and test

information is collected from both the QSP and Testnet databases. Reptile can also offer the

possibility to view and print protocols, and to view an individual's history, i.e. previously

performed tests and repairs.

 2

We were assigned this task by Prevas because they felt that VB6 was getting rather outdated

and since most of their newer products are using the .NET framework they wanted to upgrade

their VB6 applications to .NET framework that could allow easier integration. The .NET

framework provides a more compatible and flexible platform suitable for the other products

using the same environment. The goal of this project was to achieve a fully converted

application using the .NET framework with its original functionality intact.

This dissertation consists of a detailed description of issues that were taken into consideration

before the upgrade, an upgrade report describing the problems we encountered during the

conversion to VB.NET and the solutions to these problems. Finally the document presents

our conclusions, lessons learned and recommendations on how to perform a conversion.

1.1 Document Outline

This report is structured as follows:

Chapter 2 contains the background information about the languages involved in the

conversion process. It also points out differences between them. Chapter 2 also describes the

.NET framework and the components that are a part of the NET framework.

Chapter 3 describes the conversion process and the result of this project. It also describes the

issues we encountered during the conversion and how they were solved. Chapter 3 also

describes other conversion issues that might occur during a conversion.

Chapter 4 describes the result of the conversion and introduces a checklist which may be used

to perform similar conversion in the future. This chapter also describes each step in the

checklist and the corresponding section in the conversion which was performed.

Chapter 5 contains recommendations for future work and conclusions drawn from this

conversion process.

 3

2 Background

2.1 Visual Basic 6.0

Visual Basic (VB) [8] is basically an easy to use and learn language that allows creation of

simple/complex Graphical User Interface (GUI) applications [3]. VB introduced Windows

Rapid Application Development (RAD) [13], a feature which allows rapid creation of

applications such as demonstrations and quick user interface examples.

Initially, VB was never intended to be a complete development language but it was targeted

for Microsoft Windows client applications. These client applications run on a workstation or

personal computer and depend on server to perform some operations. VB includes all the

necessary tools for writing programs for Windows. This was reported to be the reason why

VB was so successful over the years in creating third party industrial components such as

ActiveX controls [10]. ActiveX controls, also called Active Components, is a reusable

software component based on the Component Object Model (COM) which is described more

in detail below.

Visual Basic 6 was released in 1998 after a series of previous Visual Basic 1 to 5. VB6 was

intended for developing Windows based applications. Indeed, VB was reported to be one of

the first systems that made writing programs for Windows Operating System easier [3].

2.2 Visual Basic 6.0 Features

VB6 uses the Component Object Model (COM) [11] product, a mechanism for linking

software components together. The COM interface is a platform and is a language

independent technique used for communication between objects within a program or between

different programs. The COM is also referred to as a binary standard and works with the

codes that are interpreted at runtime. The COM enables creation of high performance

components and applications such as ActiveX controls and objects. The ActiveX technology

allows the building of ActiveX components that facilitate access to reusable, and reliable

software components created by other programmers to perform common tasks. However, the

 4

COM’s biggest disadvantage is that all the COM components have to be registered in the

Windows Registry.

The Integrated Development Environment (IDE) provided by VB6 allows programmers to

create, run and debug Visual Basic Programs very easily. An IDE is a computer program

containing features to make development easier such as a compiler, debugger and a text

editor. An example of an IDE is the Microsoft Visual Studio [8].

Rapid Application Development (RAD) is an important feature in VB6. Just like the name

suggests, RAD allows rapid creation of applications. With the use of RAD feature, VB6 may

create a good demonstration and provide quick user interface examples [13].

Despite VB6’s popularity, Microsoft saw the need to replace it with a more efficient and

flexible VB.NET language [5]. VB6 is not a true Object Oriented language and could not

support useful features such as inheritance, encapsulation, polymorphism, overloading and

overriding and this was reported to be the reason why some programmers were moving from

VB6 to Java. Additionally COM was reported to be rather complex and tightly coupled

binary standard which did not support internet applications effectively. There was need for a

language which could address the challenges of Web applications development more

effectively. The few limitations mentioned, plus others to be discussed later led to the

withdrawal of VB6 development in favor of a Visual Basic.NET.

2.3 .NET Framework

The Microsoft .NET framework is a software component that is a part of the Windows

platform. .NET covers all the layers of software development from the operating system up.

The .NET framework consists of two main elements: a runtime environment called Common

Language Runtime (CLR) and a class library called the Framework Class Library (FCL) [4].

One of the most important advantages with the .NET framework is that it is fully language

independent which means components written in .NET languages can interact with each other

regardless of which .NET language they are written in. The language independence is made

possible due to the Common Language Runtime (CLR) [2] which will be described in detail

in the next section.

 5

2.3.1 Common Language Runtime

The Common Language Runtime [2] is the virtual machine component of the .NET

framework, as shown in Error! Reference source not found.. A virtual machine [18] is a

software implementation of a machine. There are several advantages with virtual machines

such as allowing several different operating systems on one computer working isolated from

each other. The CLR is located at the core of the .NET platform and is responsible for

managing the execution of the compiled source code.

Figure 2-1 The Common Language Runtime Environment[2]

Among the services that the CLR provides are language independence, versioning and

deployment support.

2.3.2 Compilation

Compilers that target the .NET framework differ from traditional compilers. Traditional

compilers target a specific processor and produce binary files that may then be executed

directly on the target processor. However, .NET compiler produces binary files containing an

intermediate language known as the Common Intermediate Language (CIL formerly known

as Microsoft Intermediate Language) [2].

 6

Figure 2-2 The Common Language Infrastructure[2]

This CIL is not interpreted but is rather compiled in a manner referred to as Just in Time

Compilation (JIT) [19]. The CLR contains a couple of JIT compilers which convert the CIL

code into native code which is binary code targeted at the processor on the computer on

which the code resides.

 7

2.3.3 .NET Framework - Class Library

The Framework Class Library (FCL) is a standard library which consists of 2500 reusable

classes available to all .NET languages [2] .The library is built on the CLR and provides

services needed by modern applications. Applications targeting the .NET framework interact

directly with the FCL while the CLR serves as the underlying engine.

2.3.4 Other .NET Related Languages

There are several languages which are compatible with the .NET framework such as J sharp

(J#) [15] and the .NET version of Delphi called Delphi.NET [14] however the most common

languages are C# (C sharp) [4] and Visual Basic.NET (VB.NET) [5]. A key piece of

functionality that makes it possible to use several different .NET languages in the same

application without any conversion between them is the Common Type System (CTS) [4].

The CTS defines all possible data types and programming constructs and how they may or

may not interact with each other. So since all languages using the CTS are using the same

library of data types calling one language from another does not require any conversion

between them.

2.3.5 C# (SHARP)

C# is a programming language designed to specifically target the .NET framework. It was

designed by a Danish engineer called Anders Hejlsberg who also created Turbo Pascal and

Delphi. C++ is the language most similar to C# however one great advantage with C# is the

ability to create graphical user interfaces relatively easy. With C# and other .NET languages

which uses Win Forms the developer can design a user interface simply by dragging and

dropping controls onto a form from a toolbox and then write the code to handle the control

events whereas in C++ designing a graphical user interface can be a rather complex task.

2.4 Differences between Visual Basic 6 and Visual Basic.NET

Understanding the differences between Visual Basic 6 and Visual Basic .NET is a

fundamental step towards successful conversion process. There are quite a number of

differences between VB6 and VB.NET, this report will discuss and highlight some of them.

 8

VB.NET could have been an upgrade of VB6 with probably a few changes or improvement

of a few features like many upgrades but this was not the case. The move to Visual

Basic.NET introduced new, different additional features and significant improvements in

comparison with VB6. VB.NET is not entirely backward compatible with VB6. The

Integration Development Environment (IDE) in VB.NET was designed to accommodate all

Visual Studio languages such as C#, Visual Basics and Visual C++ [5].

2.4.1 Multithreading

VB.NET supports multithreading [5] a very useful technique that gives a program ability to

execute several threads simultaneously. With the use of Common Language Runtime (CLR)

VB.NET is capable of creating free threaded applications a feature that allows multiple

threads to access similar set of shared data. VB6 has no direct support for free threading due

to restrictions in the runtime. Code written in VB6 is synchronous in that each line of code

must be executed before the next one is processed.

2.4.2 Object Oriented Feature

VB.NET is a true Object Oriented Language [5] in contrast to VB6 whose Object Orientation

is based on Common Object Model (COM). Being a true Object Oriented language VB.NET

supports features such as inheritance, polymorphism, overloading, overriding and

encapsulation such that classes and objects are created and classes are easily derived from

other classes. Again full Object Orientation in VB.NET facilitates efficient and easier

development of Windows applications.

2.4.3 Console Applications

Unlike VB6, VB.NET supports Console Applications [16]. Console Applications are

command line/text based applications which include some Graphical User Interface (GUI)

operating systems that allow characters to be written to and read from the console and

executed in the DOS version. Console Applications are created and supported by the

System.Console namespace where namespace is a collection of different classes. A good

 9

example of console applications is Win32 Console in Microsoft Windows applications such

as one illustrated in Figure 2-3.

Module Module 1

Sub Main ()

System.Console.Write (“Welcome to my Console Application”)

End Sub

End Module

Figure 2-3 Example Win32 Application in VB.NET

2.4.4 Memory Management

There is a significant difference in memory management between VB6 and VB.NET. In

VB6, memory associated with variables is deterministic in that, you know when the memory

is free and allocated. VB.NET uses a form of memory management called garbage collection.

Garbage collection is a mechanism for releasing the memory from objects and components

that are no longer in use. VB6 uses the COM memory management mechanism of reference

counting which stores the number of references to an object [7]. The reference counting

mechanism counts the number of active references to the object and when the object’s

reference count drops to zero the object is de-allocated. Reference counting makes it possible

to determine where and when an object will be de-allocated and also to manipulate the

lifetime of an object in a deterministic way. VB.NET does not use reference counting and

therefore it is no longer possible to determine the exact lifetime of an object. However, the

Common Language Runtime (CLR) in VB.NET takes care of garbage collection by releasing

resources as soon as an object is no longer in use. This relieves the developer from thinking

of ways to manage memory.

2.4.5 Runtime Environment

Programs in .NET framework execute in the Common Language Runtime (CLR)

environment. VB6 and the previous VB Programs execute their own runtime library known

as MSVBVM60.DLL. The CLR uses better code translation via the Just in Time compiler

while VB6 Runtime interprets the code [7].

 10

2.4.6 Data Types and Properties

There is a Common Type System (CTS) for all the languages under the .NET framework and

these languages must support the same data type as required by the common language

runtime (CLR). This eliminates incompatibilities between all the .NET languages. There are

differences related to data type in VB.NET as compared to VB6. For example, VB.NET does

not support variant data type. Variant data type in VB6 was the default universal data type

with Empty as default value. This variant data type has now been replaced by Object data

type in VB.NET with Nothing as default value [5]. An example is shown in Dim var1 as

Variant // in VB6 can hold any data type

Changes to:

Dim var1 as Object // in VB.NET can hold any data type

.

Dim var1 as Variant // in VB6 can hold any data type

Changes to:

Dim var1 as Object // in VB.NET can hold any data type

Figure 2-4 Example of Variant Data Type

Other data type changes are illustrated by Table 2-1 below:

Data Type Visual Basic 6 Visual Basic.NET

Integer 16 bit size 32 bits size

Long 32 bit size (Integer) 64 bit size

Date Date used to store as Double

(64 bit Double)

Introduces Date Time data type to

dates in different formats

Currency Currency Replaced with Decimals – more

accurate for rounding numbers

 11

Table 2-1 Differences between VB6 and VB.NET

2.4.7 Declaration and Initialization of Variables

There are differences in declaration and initialization of variables. In VB6 several variables

can be declared in the same statement but the data type of each variable must be specified as

shown in Dim var1 as Variant // in VB6 can hold any data type

Changes to:

Dim var1 as Object // in VB.NET can hold any data type

5 below:

Examples

Dim X, Y As Integer // where X is declared as variant and Y is an integer

(A variant can hold any data type)

Dim K As Integer M As Integer // where K is declared as an integer and M as an

integer.

Dim J As Integer Z As Double // where J is declared as an integer and Z as Double

Figure 2-5 Variable declaration example

In VB.NET, all variables must be declared as being of a specific type and multiple

declarations of variables of the same data type can be declared on the same line without

repeating the type keyword. For instance, a statement as Dim x, y As Double specifies that

both variables have data type Double. In VB6, only y would have type Double.

Initialization and declaration of a variable in VB.NET can be done on the same line such

as the example shown below:

Dim name As String =”Moses”

System.Console.Write (name)

Figure 2-6 Initialization and declaration in VB.NET

 12

2.4.8 Structures and User – Defined Types

Unlike VB.NET, VB6 uses Type, End Type to create structures and user-defined types as

shown on the figure below:

Type StdRec

StdId As Integer

StdName As String

End Type

Figure 2-7 VB6 Structure

In VB.NET, structures are like classes which can have methods and properties as well. The

Common Language Runtime (CLR) uses the name Type in a broad sense to include all data

types and the statement Type is changed to Structure. This new syntax structure uses

Structure… End Structure which is similar to C++, where the access scope of every member

can be specified either as Public, Private, Friend or Protected as in figure below:

Structure StdRec

Public StdId As Integer

Public StdName As String

Private StdInternal As String

End Structure

Figure 2-8 VB.NET Structure

2.4.9 Arrays

In VB.NET arrays are zero based which means that zero is the default lower bound and the

upper bound specifies the index of the last element in the array. VB6 had an Option Base to

specify the lower bounds of all arrays to be either 0-based or 1-based. This Option Base is not

supported by VB.NET.

 13

An array in VB.NET declared as:

Dim Items (10) As Integer – gives 10 items from index 0 through 9

Figure 2-9 VB.NET Array

The same declaration would give 11 items from index 0 to index 10 in VB6. This needs to be

checked carefully because one may end up with an extra element than may not have been

intended while declaring the array. Arrays in VB6 are either fixed length or dynamic. There

are no fixed arrays in VB.NET; all arrays are dynamic meaning that an array can always be

resized regardless of how it is declared. However, ReDim a keyword used to size or resize a

dynamic array, cannot be used in the initial declaration of an array but can only be used to

change the size of an array that has been declared.

2.4.10 Fixed Length Strings

In VB6, a string can have a fixed length by specifying the length in the declaration such as

Dim Name as String *20. Fixed length strings are not supported by VB.NET and are

implemented as objects of the string class, which is part of the .NET system’s namespace.

2.4.11 Structured Exception Handling

VB6 uses Unstructured Exception Handling, On Error Goto and On Error Resume Next

statements to handle exceptions at runtime. Microsoft introduced Structured Error Handling

in VB.NET, an improved error handling which uses Try...Catch...Finally control. With

VB.NET exception handling, exceptions are returned as objects which can be examined to

determine the actual nature of the error. Moreover, each exception has its own string Message

property which can be used to display information concerning the error [5].

2.4.12 Compatibility

VB.NET supports language interoperability with other languages which uses a .NET

framework. In this case then, code written in any other .NET compliant language can be used

 14

and enhanced easily and similarly the code written in VB.NET can be used and enhanced by

other .NET compliant languages. VB6 also provided this functionality through COM but it

was rather limited. However, to make language interoperability easier VB.NET uses

Intermediate Language (IL) and Common Language Specification (CLS) of the .NET

framework.

VB.NET is platform independent and as such programs written in VB.NET can run on any

platform under .Net framework.

2.4.13 Security

VB.NET provides a new security model, Code Access security, as compared to role-based

security in VB6. Code Access security controls what the code may access. For example

security can be set to a component in such away that a component cannot access the database.

This type of security is crucial because it facilitates building components that can be trusted.

2.4.14 Forms

VB6 forms were replaced by Windows Forms in VB.NET which are based on

System.Windows.Forms namespace. Windows forms allow automatic resizing and have

many new and improved features such as in- place menu editing and better Graphical

Display Interface (GDI+) support which provides better graphics handling.

 15

3 Conversion Process

Converting an application from one language to another can be a rather complex task.

Differences between languages can result in that substantial changes have to be made in the

code during the conversion process. The list of differences that are set to cause issues during

conversion can be long. One area to think about is flow of control; two examples of this area

are the goto and gosub statements that are supported in VB6 but not in VB.NET. Another

area to take into consideration is array index issues, a good example of an array index issue is

when an array is declared in VB6 with size 6 will mean it has room for 7 elements with index

ranging from 0 to 6. An array declared in VB.NET with size 6 means it has room for 6

elements with index ranging from 0-5 this is something that can cause problems while

upgrading from VB6 to VB.NET.

There are several aspects which have to be taken into consideration before upgrading an

application. The first decision which has to be made is whether it is really necessary to

upgrade the application to .NET at all. However, by not upgrading to .NET would mean that

an application may not take the advantage of the features provided by the .NET framework,

which were mentioned in section 2.3.

Another way to get the job done is to partially upgrade the application. Furthermore, there are

several different techniques to upgrade the application. There are automated Upgrade

Wizards that perform the upgrade but these do not perform the upgrade 100%. A lot of work

has to be done with the code in order to get the application up and running. The other

technique is to simply rewrite the program into a .NET language but this technique also

requires a lot of work and time. While using automated wizards to perform the conversion

there are few large VB6 applications which will be converted without significant rewriting of

the code after the conversion. Features such as the App class and declaring a variable of the

as any which was ok in VB6 are no longer supported in VB.NET and the Upgrade Wizard

will not upgrade them. Such problems would have to be re implemented which in turn may

affect other parts of the program. Facing such problems simply re-writing the application can

in some cases go faster than using an Upgrade Wizard. However which technique to use is

determined on a case by case basis.

 16

3.1 Language Decision:

Since we are converting a VB6 application to .NET we had two languages to choose from:

C# and VB.NET. Since both of them are .NET languages they use the same Framework Class

Libraries. VB.NET however has more in common in syntax with VB6 than C#. Another

advantage with converting the code to VB.NET is that we then can use the Microsoft

Upgrade Wizard to perform the conversion. Those are the main reasons for us choosing to

convert to VB.NET over C#.

3.2 Before the Conversion

Before upgrading any systems, existing or current systems need to be evaluated before

upgrading in order to identify the changes that should be made before the upgrade. To prepare

the application for upgrade, an initial assessment is needed in order to access the current and

target architecture. Since our task is to upgrade an application from Visual Basic 6 platform

to a VB.NET environment, the issue at hand is which recommendations or practices we

should take into account before the upgrade process. Given the fact that any upgrade would

lead to some modifications, there is need to understand the functionality of the application

and establish the effort required, as this could help to eliminate the number of changes that

may be required and thus saves work and reduces the amount of time required by the

upgrade.

Given the considerable differences between VB6 and VB.NET, the fundamental step is to

understand and identify the areas affected by the differences in order to modify and minimize

the number of changes that may conflict with the new environment. Syntax differences

should be understood and identified. Some VB6 language elements such as declaring a

variable with “as any” as its data type are not supported by VB.NET and such declarations

therefore, must be identified and rewritten. Other elements may no longer be meaningful to

VB.NET such as Go Sub, Defnt, Return and VarPtr. For example, pointer elements like

VarPtr are no longer valid in the .NET framework.

One option is to use the Upgrade Wizard- an inbuilt feature provided by Microsoft Visual

Studio [22]. The Upgrade Wizard fixes some of the problems involved in the upgrade process

reducing a great deal of upgrade time. For instance problems such as variables and variants

 17

can be fixed with little or no effort. Some problems are more easily solved before the upgrade

rather than waiting to fix them after the upgrade (in VB.NET) however, the decision on

which option is better depends on the option taken.

3.3 Results

The Microsoft Visual Studio Upgrade Wizard upgraded the project and generated an upgrade

report describing the results in detail. The upgrade report gave a breakdown of 1049 error

messages out of which 335 were referred to as compile errors. Compile errors mean that the

program will not compile and we would not be able to even try to run the program until those

335 compile errors has been solved. Further the upgrade generated some 559 so called design

errors and 155 upgrade warnings. The design errors are concerning properties that were set

during the design time of the application which could not be upgraded because there is no

equivalent property in VB.NET. It should also be noted that design errors can also generate

compile errors. The difference between a compile error and a design error is that the design

error refers to a property set during design time. The upgrade warnings relate to differences

that may cause unexpected results while the application is running. The most common

upgrade warning in our project is the “Cannot determine the default property of object”

referring to the fact that default properties of objects are no longer supported in VB.NET.

This problem will be described in detail in the next section. Our strategy is to first of all

address the compile errors in order to be able to compile the program. Once we are able to

compile the program then we can start to work with the upgrade warnings.

3.4 Compile Errors

The compile errors are the most severe type of errors we faced after the application was

upgraded. Until the compile errors are fixed we are unable to run the program and perform

further tests of the functionality of the application. So after the upgrade we started to look for

solutions and fix the compile errors

3.4.1 Property was not Upgraded (Compile error).

There are several features in VB6 which have no direct equivalent in VB.NET. There is no

general solution to these problems. To some of them there are features in VB.NET which are

 18

similar that can be used and in other cases there is nothing in VB.NET that can be used

instead the entire feature has to be implemented manually.

The App class in VB6 is not present in the VB.NET however there are some features that are

similar in the VB.NET application class [30]. In our project we encountered two properties in

the App class for which there was no equivalent in VB.NET. The first problem we

encountered was regarding the helpconstant App.helpfile where the Upgrade Wizard

generated the message App property App.helpFile was not upgraded [7]. Since that specific

line of code was not converted it was refering to a class which is not present in the VB.NET

class library and therfore generating a compile error. The app.helpfile specifies the path and

name to the helpfile used by the application. In our project the app.helpfile was used as a

parameter in the winhelp function Figure 3-1.

Declare Function WinHelp Lib "user32" Alias "WinHelpA"

ByVal hWnd As Integer,_

ByVal lpHelpFile As String,_

ByVal wCommand As Integer, _

ByVal dwData As Integer) As Integer

Figure 3-1 WinHelp function

The WinHelp function is used to create pop-up context sensitive help by using the windows

API. There are several different ways to solve this problem. If the application has a helpfile

associated to it then the solution is just to change the app.helpfile to the name and path of the

helpfile. So for example if the helpfile is called name MyProject.hlp and is stored in the c:\

directory the app.helpfile should simply be changed into “c:\MyProject.hlp”. If the

application does not use a helpfile the app.helpfile property could be changed into an empty

string “ ”. Since our application uses a helpfile we solved our problem by simply changing all

appearances of the app.helpfile into the name and path of our helpfile.

The other case where the App class was being used was with the App.PrevInstance. The

PrevInstance is used to determine whether there is another instance of the application already

running. This is an important feature since several instances of the application running at the

same time can have serious consequences, as for example when two instances of the same

program manipulate the same data in the database which may lead to the data actually stored

 19

in the database being inconsistent. Since there is nothing in VB.NET similar to the

App.PrevInstance we had to create a function where we implemented the functionality of the

App.PrevInstance.

Function PrevInstance() As Boolean

If Ubound(Diagnostics.Process.GetProcessesByName

(Diagnostics.Process.GetCurrentProcess.ProcessName)) > 0 ThenReturn True

Else Return False

End If

End Function

Figure 3-2 App.PrevInstance replacement

We created a Boolean function since we only needed an answer to whether there are other

instances of the application running or not. To determine whether there are more instances of

the application running we uses the Process class [26] which is a member of the

System.Diagnostics namespace. An object of the process class provides access to the

processes running on a system. To retrieve the process name of our application we used the

GetCurrentProcess.ProcessName properties of the Process class and the answer from that

statement was in turn used as an argument in the GetProcessesByName property of the

Process class. The GetProcessesByName property creates an array containing all the

recourses associated with the process or file which is used as argument to the function. In our

case we pass the process name of our application. The Ubound function is used in the if

statement to determine if the upper bound of the array created by the GetProcessesByName

property is greater than 0 indicating that there are more instances of the application running.

3.4.2 Declaring a parameter 'As Any' is not supported

After the upgrade was completed the first compile error we encountered referred to the as any

statement. In VB6 when referring to an external procedure using the declare statement it was

possible to declare as any for the data type of the parameters and return type. Using the as

any as data type disables type checking making it possible for any data type to be passed or

returned. However, VB.NET does not support the use of the as any as data type. In a declare

 20

statement the data type of the parameters and return type has to be specifically declared. A

great advantage with having to specifically declare the data type is type safety, meaning

reducing the risk of undesirable and unpredictable behavior of the program.

In our project we had several references to external procedures stored in Dynamic Linked

Libraries (DLL) files. Dynamic linking means that the subroutine is loaded into the

application at runtime instead of during compile time. The problem with these references is

that each one of them had one or several parameters the data type of which was declared as

any. There are several ways to solve this problem. One way is to simply trace the call and

from there, find out with which data type the external procedure is being called. If it turns out

that the external procedure is being called with several different data types the overloading

technique is a good approach. Overloading means that several functions with the same name

are declared but with different data types on their parameters and return type then the

function that is actually being used depends on with which data type the function is being

called [5].

An example of a function which is used in our project and has a parameter with “as any” as

its data type is the GetPrivateProfileString function. The GetPrivateProfileString function is

a part of the Windows platform and is supported by all versions of the Windows operating

system from the Windows95 edition and all later versions. The declaration statement of the

function is shown in Error! Reference source not found.:

Private Declare Function GetPrivateProfileString _
Lib "kernel32" Alias "GetPrivateProfileStringA" _

(ByVal lpSectionName As String, _
ByVal lpKeyName As Any, _
ByVal lpDefault As String, _

ByVal lpReturnedString As String, _
ByVal nSize As Long, _

ByVal lpFileName As String) As Long

Figure 3-3 The GetPrivateProfileString Function Declaration

From the declaration above one can see the lpKeyName parameter has as any as its data type.

In our project we solved this by tracing all the references to this function and checked the

data type which was being passed into the lpKeyName parameter in every call to the

 21

GetPrivateProfileString function. Visual Studio has built in features which facilitate tracing

of calls to a specific function. Simply by clicking the right mouse button on the function

name and choosing the “find all references” Visual Studio presents a list with all calls and

declarations of the function concerned. By using this method we ensured that all the

references to the function regarding the lpKeyName parameter were of the string data type.

We had the same problem with several references to external procedures stored in DLL files

concerning the ODBC interface. An example of a function which we had to modify in order

to be able to compile is the SQLColAttributes which obtains the attributes for a column in the

result from a query sent to the database. SQLColAttributes can also be used to determine the

number of colums attained in the result from the query as in Figure 3-4.

Declare Function SQLColAttributes Lib "odbc32.dll"

(ByVal hstmt As Integer,_

 ByVal icol As Short,_

 ByVal fDescType As Short,_

 ByRef rgbDesc As Any,_

 ByVal cbDescMax As Short,_

 ByRef pcbDesc As Short,_

 ByRef pfDesc As Integer) As Short

Figure 3-4 Example function with SQL Attributes

From the declaration above it can be seen that the rgbDesc parameter has the as any declared

as the data type. The problem with this parameter was solved by checking for other

references where the function is being used. We found that the most probable data type of

this is the string data type. The general sollution for this problem is to trace the call to the

function having a parameter using as any as datatype and from there determine which

datatype which is used in the call to the parameter concerned. If there are several calls to the

function using different datatype one sollution would be to use overloading. Overloading is a

techniqe where several copies of a function is decleared but with different parameter

signatures. When the function is called the call would be bound to the function whith

parameter signature matching the parameter signature of the call.

 22

3.4.3 Unable to determine which constant to upgrade vbNormal to

In VB6 it is possible to define a set of named constants known as enumeration constants [7].

Every member of the enumeration is assigned an integer value and in the code the constant is

evaluated to its assigned integer. Since enumerations in VB6 represent integers and not

distinct types the program can only verify their underlying value. Unfortunately this allows

developers to use constants intended for different purposes interchangeably and also to use

simple integers which represent the underlying values instead of the constants. In our project

this problem was exclusively related to the vbNormal constant [7]. The constant vbNormal

was being used in connection with the Screen.MousePointer property. The vbNormal

constant is often used instead of the vbDefault constant. Both the vbDefault and the vbNormal

constants have 0 as their underlying value. Error! Reference source not found. shows code

examples showing 3 statements that all have the same underlying value:

Correct MousePointer constant

Screen.MousePointer = vbDefault

Incorrect constant, same underlying value

Screen.MousePointer = vbNormal

The same underlying value

Screen.MousePointer = 0

Figure 3-5 Example of Code with the vbNormal Constant

Since the upgrade wizard is unable to upgrade the vbNormal constant this generates a

compile error after the conversion. The solution to this problem is to determine which class in

VB.NET has a similar behavior. In most cases we changed the vbnormal constant to the

cursors.default statement which gets the default cursor, usually an arrow cursor [20]. In other

cases in our code where the application is busy and the user should wait for a specific

operation to complete we used the cursors.waitcursor statement which changes the cursor

into an hourglass [21].

3.4.4 Number of Indices Exceeds the Number of Dimensions of the Indexed Array

The declaration of arrays is among the issues raised by the Upgrade Wizard which must be

fixed before the program will run. Arrays in VB.NET can be declared and initialized in one

 23

statement, or can be declared in one statement and initialized in another. However, when an

array is declared and initialized in the same statement then, the type and the number of

elements in the array must be specified. In VB6 both the upper and lower bound of an array

are defined. All arrays in VB.NET have a lower bound of zero by default.

The main issue with arrays during the conversion process was multidimensional arrays [22].

The dimensions of an array correspond to the number of indexes used to identify an

individual element. ‘Multidimensional arrays should be handled with care because when

dimensions are added to an array the total storage may increase considerably depending on

the size of the array.

Our VB.NET application generated the following compile error: Number of indices exceeds

the number of dimensions of the indexed array. This means that the Upgrade Wizard was

unable to determine how many dimensions the array has and therefore the array is treated as a

one dimensional array. This problem is solved by using commas in the declaration of the

array in order to specify how many dimensions it has as shown is shown in Figure 3.6.

When the Reptile application performs queries on the database the result from the queries is

stored in a matrix called query_result_matrix. The problem with the query_result_matrix was

that it was declared as an array without any dimensions. In VB6 this worked fine since the

dimensions would be determined once the array was assigned values. However in VB.Net

this feature is no longer supported and dimensions has to be specified in the declaration of the

array. It is possible to change the size of the array using the ReDim operator but the number

of dimensions cannot be changed.

The solution to this problem was that the declaration has to be made multidimensional so we

had to change the declaration from:

 24

Public query_result_matrix () As String

To

Public query_result_matrix (,) As String

Figure 3-6 Declaration of a multidimensional array

This is because in VB.NET a multidimensional array is declared by adding one or more

commas within the parentheses of the array declaration. Each comma added specifies an

additional array dimension.

3.4.5 Other Possible Compile Errors

Apart from the compile errors we encountered, mentioned in the section above, there are

several other upgrade issues which may occur depending on which components the project

uses. VB6 is backward compatible towards the older VB versions such as VB5, if it is an old

project it might originally have been written in for example VB5 and then ported up to VB6.

This means that there might be some objects from VB5 or earlier VB versions in the code.

When upgrading to VB.NET the wizard may not be able to recognize these objects and

therefore the wizard will be unable to upgrade these objects, resulting in compile errors in the

code.

Another area which the Upgrade Wizard is unable to upgrade is the drag and drop features.

Drag and drop is the action of clicking on a virtual object and dragging it to a different

location. Drag and drop is supported in both VB6 and VB.NET however it is implemented

differently. VB6 supports two kinds of drag and drop operations. One is the standard drag

which is intended to support drag and drop operations within a single windows form. The

other is the OLE drag and drop operations which are used to support drag and drop capability

between applications [7].

 25

Figure 3-7 Life cycle of OLE VB6 drag and drop operation

In VB.NET drag and drop operations between applications and between controls in a

windows form has been consolidated into a single framework [7]. These changes simplify the

implementation of drag and drop. However, it requires re-writing of the drag and drop code

for existing applications.

 26

Figure 3-8 Life cycle of drag and drop operation in VB.NET

It should be noted that in Figure 3- the life cycle applies to drag and drop operations between

applications and between controls within the same form.

3.5 Upgrade Warnings:

The Upgrade Wizard has a set of rules for converting from VB6 to VB.NET. These rules are

used for each property, event and method of a particular object type. The Wizard does not

know how to interpret properties of a variable that is bound at run-time. Error Warning Issue

(EWI) is the term used for errors, warnings and issues inserted into the code after upgrade.

EWI comments and messages are inserted on the line before the problem and they include an

underlined link to appropriate help topics. There are different types of EWIs and the major

ones include Upgrade Issues, Upgrade warning and Design issues.

 27

Apart from the compile errors, another 155 upgrade warning messages were generated.

Upgrade warnings do not cause any compile errors but the application might behave

differently during run time. An example of a run time warning is the dir function. In VB6 the

Dir function was used to return the name of a file, folder or directory. It was also possible to

use the strings “.” and “...” which is in the path argument to represent the current directory or

the parent directory. These strings are not used in the VB.NET but this will not generate a

compile error. Consequently applications using the “.” and “..” strings will have a different

behavior while applications using the Dir function without the strings mentioned above will

work as expected. Not all runtime warnings require any changes in the code however the

application need to be tested thoroughly in order to discover components with unexpected

behavior.

3.5.1 Event may Fire when Form is initialized

The differences between Visual Basic 6 forms and Visual Basic .NET forms are quite minor.

Both VB6 and VB.NET designer create forms, set properties, and add controls to a form in a

similar manner. However, the difference is that some events do not fire in the same order

meaning some events are not triggered. An example of an event is when a button is clicked

then the click event of that particular button is triggered.

In VB6 Load event is the first event to fire while Resize event occurs before Load event in

VB.NET. Other events may occur before Load event depending on the control properties set

at design time [7]. In a case where an element of a control array is created in Form.Event and

code to position the control array element in the Form.Resize an event is triggered.

Everything functions as intended if the Resize event fires after the Load Event. However, if

the Resize event fires before the Load event then an error occurs in Resize code since an

attempt is made to access a control array element that does not exist

Initialization of forms and controls in VB.NET is handled by the InititalizeComponent

method, and no modification is made to the order in which the objects are initialized.

However, events may be triggered during initialization and a run time error may occur if the

event handler references components that have not been initialized. In the Reptile system,

 28

after the upgrade, an upgrade warning was generated UPGRADE-WARNING:

EventCheckStateChanged may fire when the form is initialized.

Private SubCheck1_CheckStateChnaged(ByVal sender As System.Object _,

ByVal e As System.EventArgs) Handles Check1.CheckStateChanged.

TextBox1.Text=”Check1 was clicked”

End Sub

Figure 3-8 Subroutine not using IsInitializing

The above code means that an error may occur if the TextBox control is not initialized. This

was fixed by adding the IsInitializing property to the form, setting the property to true in the

form’s constructor before the InitializeComponent call and setting to false after the call. The

code below was then added to the event procedure to check the value of the property before

running the code.

Private SubCheck1_CheckStateChnaged(ByVal sender As System.Object _,

ByVal e As System.EventArgs) Handles Check1.CheckStateChanged.

If Form1.DefInstance.IsInitializing = True Then

Exit Sub

Else

TextBox1.Text=”Check1 was clicked”

End If

End Sub

Figure 3-9 Subroutine using IsInitializing

3.5.2 Structure may require Marshalling Attributes to be passed as an Argument in

this Declare Statement.

In VB.NET, a structure or user define type passed as an argument in declare statement may

require additional marshalling attributes to ensure that the arguments are passed properly to a

subroutine or external function. However, user define types in VB6 could be passed as an

argument in a declare statement [31].

After upgrade, arrays and fixed strings may not function as expected, in which case they may

require marshalling attributes. An example below shows a structure before and after upgrade.

 29

Type MyType
 s As String * 100

End Type

Figure 3-10 VB6 code without marshalling

Code after upgrade to Visual Basic .NET

Structure MyType
<VBFixedString(100),
System.Runtime.InteropServices.MarshalAs(System.Runtime.Inte
ropServices.Unmanage d Type.ByValTStr, SizeConst:=100)>
Public s As String
End Structure

Figure 3-11 Visual Basic .NET Code with Marshalling

As seen from the above code, the fixed string requires additional marshalling attributes in

order to be passed properly. To fix this an import statement to reference the Interopservice

namespace was added, the structure and the string declaration was modified by including

marshalling attributes as shown below:

Imports System.Runtime.InteropServices
<StructLayout(LayoutKind.Sequential,CharSet=CharSet.ANSI)>

Structure MyType
<MarshalAs(UnmanagedType.ByValTStr,SizeConst:=100)> Public s As String

End Structure

Figure 3-12 Modified code

3.5.3 The Lower Bounds of a Collection has Changed

 While running the application we discovered one warning that actually caused the

application to crash during run time. Our application was in the VB6 version using imagelists

to access images used for example as icons. The problem comes from the changes in the way

arrays are declared in VB.NET.

Dim Items (5) As String

Figure 3-13 Array Declaration

 30

The array declarations in Error! Reference source not found. in VB6 will produce an array

with its index ranging from 0 to 5 yielding 6 elements. In VB.NET, this same declaration will

yield 5 elements from index 0 through index 4. In VB6 array indexes can begin with any

positive integer but in VB.NET all arrays are now 0 bound meaning their index always starts

from 0.

So when the Reptile application tried to access the last item in the imagelist as shown in

Error! Reference source not found. an index out of bounds exception will be thrown.

flxRepairInfo.CellPicture = imgList.Images.Item(3)

Figure 3-14 Imagelist

The exception is thrown since in VB6 the declaration of the imagelist with a value of 3 would

yield 4 elements with index from 0 to 3 however after the upgrade declaring the imagelist

with size 3 would yield only 3 items in the list with index ranging from 0 to 2. The solution to

this problem was to change the references to the imagelist so instead of using the indexes 1 to

3 the references where changed so they now use the indexes 0 to 2.

3.5.4 Other Possible Upgrade Warnings

Apart from the upgrade warnings we encountered as mentioned in the above section there are

also several other possible upgrade warnings which may be encountered when upgrading a

VB6 application.

The Null value is no longer supported in VB.NET, when upgrading the Upgrade Wizard will

upgrade the Null value into the closest equivalent [7]. As an example

System.DBNull.Value.IsNull would be upgraded into DBNull. In VB6 functions could accept

Null as an argument and could also return Null, in VB.NET this is only possible with strings.

If the Null value is used in an arithmetic expression this would cause a run time exception.

There are also certain parameters which the wizard will completely remove during the

upgrade such as the Helpfile and the Context parameters of the MsgBox and InputBox classes.

These parameters are no longer supported in VB.NET but what makes them special is that the

Upgrade Wizard completely removes them during the upgrade [7].

 31

3.5.5 Could not Resolve Default Property

In VB6 variables a variable could be referenced without first declaring it with a Dim , private

or public statement. When a undeclared variable is referenced is used VB6 would create them

as variant. Since the actual type of variant variables is not known until run time, the number

of late-bound variables increases and as a result the Upgrade Wizard cannot determine which

operation to apply to these variables and hence Upgrade Warnings or conversion errors are

generated. When the Upgrade Wizard finds undeclared variables, a warning comment is

inserted on the line before the problem ‘Error warning and Issue (EWI) 1037

(UPGRADE_WARNING: Couldn't resolve default property of object ‘x’) for every use of

the variable as shown in Error! Reference source not found. below [7].

VB6 supported default properties which could as be used as shortcuts in the code. For

example, a Textbox control default property was the Text property and this could be typed as

TextBox1= “Hello” instead of TextBox1.Text = “Hello” Default properties are no longer

supported by VB.NET, all properties references must be fully qualified. During upgrade,

early-bound objects default properties are resolved to the property name but late-bound

objects cannot be resolved because it is impossible to determine a default property without

knowing what the object is. The Upgrade Wizard report variables declared as objects and

VB.Net declares them as Byte.

The example below illustrates a VB.Net code- generated by Upgrade Wizard with variable

declaration warning.

Dim x As Object

Dim y As Object

Dim k As Object

UPGRADE WARNING: Couldn't resolve default property of object of x.

x =7

UPGRADE WARNING: Couldn't resolve default property of object of y.

y = 14

UPGRADE WARNING: Couldn't resolve default property of object of k.

K = 7+14

Figure 3-15VB.NET code with upgrade warnings

 32

Private Sub Command1_Click(, , ,)

Dim x As Byte =7

Dim y As Byte =14

Dim k As Byte = 7+14

End Sub

Figure 3-16 VB.Net code: with no upgrade warning

Other Upgrade Warnings include:

UPGRADE_WARNING: Form event frmMain.Unload has a new behavior. ‘Click for more:
ms-help://MS.MSDNVS/vbcon/html/vbup2065.htm

Private Sub frmMain_Closed(ByVal eventSender As System.Object, _

ByVal eventArgs As System.EventArgs) Handles MyBase.Closed

con.Close()

End Sub

Figure 3-17 New Behaviour

From the above warning, the Upgrade Wizard has changed the event handler for the Unload

event to the Close event. Consequently, the wizard has added the Handles clause and changed

the event handler signature to the .NET standard.

3.6 Design Errors

The design errors refer to properties that were set during design time. The design errors

covered more than half of the overall issues generated in the upgrade report which will be

shown in figure 3.33. These design errors are sub-divided into 4 different categories:

ItemData property cannot be upgraded, Property or method has a new behavior, Property or

method was not upgraded and Late-bound default property reference could not be resolved.

 33

1 45

120

393

ItemData property cannot

be upgraded

Property or method has a

new behavior

Property or method was

not upgraded

Late-bound default

property reference could

not be resolved

Figure 3-18 Design errors

Some of the design errors such as property cannot be upgraded may also generate compile

errors since a property that was supported in the VB6 but is not supported in VB.NET will

remain unchanged after the upgrade. This may result in the possibility that an object or a

property will be declared in the code but not recognized by the .NET compiler and a compile

error will occur. Other types of design errors such as Property or method has a new behavior

will not generate any compile errors but may instead lead to unexpected behavior from the

application.

3.6.1 Property not Upgraded (Design error)

A problem we encountered with regard to features that are set during design time which were

not upgraded, was operations performed on the TreeNode class [24]. The Reptile application

has a function where all the products are loaded from the database as a string into a cache file

from which all the products are presented as a tree structure. After the upgrade the Upgrade

Wizard generated the following error messages:

UPGRADE_ISSUE: MSComctlLib.Node property nodex.Sorted was not upgraded

nodex.Sorted = False

UPGRADE_ISSUE: MSComctlLib.Node property nodex.Selected was not upgraded

nodex.Selected = True

 34

The operations “sorted” and “selected”, which in VB6 could be performed using the

TreeNode class could no longer be performed directly on the TreeNode class in VB.Net.

The selected operation uses the get operator to check whether the node is selected or not and

uses the set operator to select or deselect the node. The sorted operation uses the get and set

operators in the same way as the selected operator to check if the node is sorted or to set

whether it is sorted or not.

The Treeview class [25] displays hierarchical data in the form of a tree. The TreeView is

made up from nodes. The nodes are objects of the TreeNode class. Nodes that contain other

nodes are called parent nodes and nodes contained by other nodes are called child nodes. A

node with no children is called a leaf node and the node that has no parent and is the parent to

all other nodes is called the root node.

Both problems were solved by performing the operations directly on the TreeView object. So

that when the node.Sorted() operation was used to sort all the nodes belonging to that

particular node the statement was changed into TreeView.Sort() in order to sort all the nodes

in the tree. In the same way we solved the problem with the selected property. In VB6 the

node.Selected statement was used to get the node which the user had selected on the screen.

This statement was changed into TreeView.SelectedNode which retrieved the node that the

user has selected on the screen.

3.6.2 Other Possible Design Errors

Apart from the design errors we experienced during the conversion, there are several other

design errors which may occur during an upgrade. There are several properties, events and

methods which after the upgrade are marked with the warning that they now have a new

behavior. This message may result in the application behaving unexpectedly since the new

VB.NET property has a different behavior from the VB6 property. Examples of such issues

are the Form.Unload and the Control.Keypress event [7]. These issues usually do not

generate any compile errors but may eventually cause unexpected behavior during run time.

There is no general solution to this problem. The solution is to test the features concerned and

make the proper modifications to the code.

Another design error that may occur during a conversion is when a property of a control is

not upgraded which generates the <controltype> control <controlname> was not upgraded

 35

message. This message concerns controls such as the OLE container and Active X and

usually the issue will generate a compile error. The OLE container makes it possible to add

insert-able objects to the forms in application [28]. The OLE container is not supported in the

VB.NET. It is recommended to avoid using this feature at all in order to avoid being forced to

deal with upgrade issues regarding OLE container after the upgrade, but it is also possible to

use the Browser control in order to simulate the same functionality as the OLE container.

3.7 Changing caching from string to XML

The Reptile application has a form where all products are loaded from the database and

stored as a string in a cache file from which the Reptile present the product structure in the

form of a tree as shown in Error! Reference source not found.20.

Figure 3-19 Reptile Treeview

Prevas requested the caching for the tree to be done using an xml file instead of being loaded

as a long string into a file.

 36

3.7.1 XML (Extensible Markup Language)

XML is a specification for creating custom markup languages. It is classified as an extendible

language since it allows the users to define their own elements. XML is primarily used to

facilitate sharing of data between different information systems. Data is stored within so

called tags in the XML file in a structure which can be represented as a tree. This is achieved

by creating tags within tags. Every XML file has to have a root element which can be seen as

the root node of the tree structure.

Figure 3-20 XML Tags

Error! Reference source not found. describes an XML structure with the <home> tag as

root node. The above statement can be viewed as a tree with only one level, the root node.

Figure 3-21 XML entry with attributes

Error! Reference source not found. shows the previous example but with more attributes

added to the <home> entity. In this example every <home> entity has a <house> attribute and

every <house> entity has the attributes <address> and <price>. This can be represented as a

tree with 3 levels.

<home> </home>

<home>

 <house>

 <address> Home street 4 </address>

<price> 2 000 000 </price>

 </house>

</home>

 37

Figure 3-22 XML Tree

Previously the data was stored as a string in a file as shown in figure 3.23.

UKL 401 11/58HP;R3A;MIKROVÅGSENHET 23GHz;10;SXA 124 1958/1;R1;HUV

Figure 3-23 Caching as string

Changing the caching from a simple string in a file into an XML file has several advantages.

First of all since the entire tree structure is already in the XML file the reptile application

works faster since it has to read the data from the file and present the data according to the

structure in the file.

<Product ProductNumber="UKL 401 11/58HP" RState="R3A"
productName="MIKROVÅGSENHET 23GHz" Description="">

<Product Position="2" ProductNumber="UKM 110 60/1" RState="R2D"
ProductName="MIKROVÅGSENHET 23GHz" Description="">

Figure 3-24 XML based caching

Another great advantage with shifting the caching from a string in a file into and XML file is

that now other applications which use XML files can use the same files with only minor

adjustments.

3.8 Issues Discovered During Testing

The last phase of upgrading the VB6 project to VB.NET is the test phase. Even though the

project compiles correctly, it is important to test all the features of the project thoroughly in

order to discover issues which the Upgrade Wizard may not have detected. Most of the

<home>

<house>

<address> <price>

 38

problems discovered during the test phase were related to visual features which had been

changed such that text on buttons was no longer visible within the button, or text labels were

hidden behind other objects.

Figure 3-25 Buttons hidden behind Tab

The solution to the problems shown in the figure above was to either move the buttons or to

resize them. Regarding the hidden text labels the solution was to pull them out and make

them visible.

During testing we also encountered a problem which required more work regarding the

project’s interaction with the windows registry. The windows registry is a directory which

stores settings and options for the windows operating systems. For example when a user

make changes in the Windows control panel or most installed software those changes are

reflected and stored in the windows registry. The registry contains two basic elements: keys

and values.

 39

Figure 3-26 Windows registry

The keys may be viewed as folders as shown in Error! Reference source not found.. A

windows registry key may in addition to contain values also contain sub keys. Registry

values are stored within the keys and are referenced separately from the keys.

3.8.1 VB.NET Registry Changes

The Reptile application uses the windows registry to store settings such as which options

should be visible and the width of the columns in the excel objects so that even if the

application is terminated or the computer shut down the settings will remain the same the

next time the application is started. Whenever the Reptile application is started it reads all the

registry settings and when the application is terminated the current settings are stored into the

windows registry.

Key

Value

 40

Private Declare Function RegQueryValueEx

 Lib "advapi32.dll" Alias "RegQueryValueExA"

 (ByVal hKey As Long, _

ByVal lpValueName As String, _

ByVal lpReserved As Long, _

lpType As Long, _

lpData As Any_

, lpcbData As Long) As Long

Figure 3-27 RegQueryValueEx

Since this is a windows API the Upgrade Wizard did not change anything in this function

therefore a compile error was generated since the lpData parameter was declared with as any

as its data type. We found that when the Reptile application called the RegQueryValueEx

function, the object that was bound to the lpData parameter was using byte as its data type.

We therefore changed the data type of the lpData parameter to as byte.

Before the upgrade the Reptile application used the RegQueryValueEx function Error!

Reference source not found.8 to read data from a specified registry key. To create new keys

and modify existing settings in the registry the Reptile uses RegCreateKeyEx API Error!

Reference source not found.9 to create keys and the RegSetValueEx API Error! Reference

source not found. to modify existring values.

Declare Function RegCreateKeyEx

Lib "advapi32.dll" Alias "RegCreateKeyExA

"(ByVal hKey As Integer,_

ByVal lpSubKey As String,_

ByVal Reserved As Integer,_

ByVal lpClass As String, _

ByVal dwOptions As Integer, _

ByVal samDesired As Integer, _

ByRef lpSecurityAttributes As SECURITY_ATTRIBUTES, _

ByRef phkResult As Integer, ByRef lpdwDisposition As Integer) As Integer

Figure 3-28 RegCreateKeyEx function

 41

Declare Function RegSetValueEx

Lib "advapi32.dll" Alias "RegSetValueExA

"(ByVal hKey As Integer,_

ByVal lpValueName As String, _

ByVal Reserved As Integer,_

ByVal dwType As Integer,_

ByRef lpData As Byte,_

ByVal cbData As Integer) As Integer

Figure 3-29 RegSetValueEx

However while testing the application we discovered that the settings were not saved in the

registry. We soon discovered that VB.NET uses a completely different way to access and

modify the registry. Instead of the API:s described earlier in this section VB.NET uses the

Registry and the Registry Key classes within the Microsoft.Win32 namespace. The solution

was to simply re-implement the read and write to registry operations. To get the value from a

registry key we used the function GetValue feature on the registry class.

My.Computer.Registry.GetValue("HKEY_CURRENT_USER\"_

+ lpSubKey, szKey, Nothing)

Figure 3-30 VB.NET read from registry

The lpSubKey parameter in Error! Reference source not found. contains the path to the key

and the szKey parameter contains the name of the key. The whole operation returns the value

of the key as a string. In order to set values of a registry key we used the Registrykey class.

Dim oRegKey As Microsoft.Win32.RegistryKey

oRegKey = Microsoft.Win32.Registry.CurrentUser.OpenSubKey(lpSubKey, True)

 42

oRegKey.SetValue(szKey, szValue)

Figure 3-31 VB.NET update registry key values

The first line of Error! Reference source not found. is the declaration of the key, and

then on the second line the OpenSubKey statement in the Registry class opens the subkey

which can be seen as the folder in the registry containing the key Error! Reference source

not found.7Figure 3-26 Windows registry

Finally the SetValue statements are used which takes two arguments: the szKey containing

the name of the key and the szValue containing the value to which the key should be set. A

great advantage with the SetValue statement is that if the key which is being changed does

not exist, VB.NET will create the key. Registry operations are a good example of how

VB.NET has made operations easier. Instead of the old way in the previous VB versions

where API:s were used and large functions such as the RegQueryValueEx function shown in

Figure 3-30 RegSetValueEx requiring a lot of code now is simply changed into just a few

lines of code.

3.9 Upgrade Summary

After the upgrade was completed the Upgrade Wizard generated a total of 1049 upgrade

issues. These upgrade issues are divided into three categories: Upgrade warnings, compile

errors and design errors.

 43

Compile Errors

32%

Design Errors

53%

Upgrade

Warnings

15%

Figure 3-32 Upgrade issues

The majority of the upgrade issues we encountered after the upgrade were the design errors

constituting of 53% of all the upgrade issues as shown in figure 3.32. Several of these design

errors also generated compile errors since they referred to features which the Upgrade Wizard

was unable to upgrade. After all the upgrade issues which generated compile errors were

resolved the project had to be thoroughly tested for run time errors. While testing the project

we discovered a few errors which were not mentioned in the upgrade report such as the

problem with the registry operations mentioned in section 3.8-1.

 44

4 Results

In most conversions between VB6 and VB.NET running the VB6 source code in the Upgrade

Wizard is only a small part of the task. Once the wizard has completed the upgrade there are

in most projects several upgrade issues such as compile errors, design errors and upgrade

warnings which need to be addressed. There are several ways to prepare the code in advance

in order to reduce the number of upgrade issues which have to be fixed after the upgrade in

order for the project to run. One way to reduce the amount of work after the upgrade is to

remove unused and duplicated code. Another issue is the removal or re-implementation

features that are no longer supported in VB.NET such as declaring variables as variants

which will be described in more in detail in the next section, and the App class which is no

longer supported in VB.NET which means the Upgrade Wizard will not upgrade it.

4.1 Upgrade Checklist

One result of the upgrade process was a checklist consisting of 8 tasks. The checklist covers

each stage of the work from the initial screening of the code before the upgrade, dealing with

upgrade issues after the upgrade and finally testing the project for unwanted behavior.

4.1.1 Checklist

1. Manually pre-checking version 1 of the code for unsupported features which will

reduce the number of upgrade issues after the upgrade.

2. Make changes to the code according to issues discovered during the manual pre check

3. Upgrade the project to VB.NET using the Upgrade Wizard which in turn produces an

upgrade report

4. Use Microsoft Visual Studio to manually fix the upgrade issues presented in the

upgrade report.

5. VB.NET project version 2. Now the project compiles and can be tested.

6. Test version 2 of the project and correct errors discovered, to give version 3

7. Hand the project version 3 to the client for testing, to give version 4 of the project.

 45

8. Fix the faults discovered during testing of version 3 and deliver VB.NET project

version 4.

4.1.2 Before the Upgrade (Checklist: steps 1 and 2)

The first step of the checklist is to prepare the code for the upgrade. The aim of preparing the

code is to reduce the number of upgrade issues which have to be fixed after the upgrade is

complete. First we were looking for duplicated and unused code. By removing duplicated and

unused code we ensure that we will not be dealing with any upgrade issues from unused

code. We were also looking for variables declared with variant as data type. Variant is a data

type which can hold any other data type such as number [29], strings or references to objects.

Variants are useful when a procedure is called with optional arguments [29].

Function ProcessAnswer(Optional ByVal Answer) as String

Figure 4-1 Process answer function

Figure 4.1 shows the procedure ProcessAnswer which takes one argument with Optional

which is a variant as its data type. This means that the procedure can be called with any data

type so the argument “Answer” can be for example a string or an integer. There are several

disadvantages with the variant data type such as:

• It prevents strict type checking

• It may reduce the application performance, since variant data types require more

memory and uses late binding meaning the type is determined during run time.

• It reduces readability since the code will be more difficult to understand

VB.NET does not support the variant data type. Instead VB.NET uses the object data type as

default data type which implements all the functionality which the variant data type had.

However as with the variant data type the object data type should be avoided when possible

since it also has the same disadvantages as the variant data type mentioned above.

There are automated ways to check and adjust the code by using so called code analyzers.

One such analyzer is Project Analyzer [27]. Project Analyzer has several useful features such

as removal of unused code and a VB.NET compatibility check which detects syntax and

 46

feature conventions which have changed in VB. However we did not have access to such

applications so we had to perform the code check manually in Visual Studio.

4.1.3 Application Version 2 (Checklist: step 3)

Once the code preparations were completed we ran the project through the Upgrade Wizard.

When the upgrade was completed the Upgrade Wizard generated an upgrade report of 1049

upgrade issues divided into 3 categories: compile errors, design errors and upgrade warnings.

The next stage was to work with the upgrade issues. Our first target was to be able to compile

the application so we started working with the compile errors. The strategy we used was to

make as small changes to the code as possible. Since most of our compile errors were

generated by features which the Upgrade Wizard could not upgrade we first of all tried to

find equivalent features in VB.NET as in the case with the Unable to determine which

constant to upgrade vbNormal to where we changed the declaration to vbDefault which is

described more in detail in section 3.4.3. However in some cases we were forced to re-

implement the missing functionality with a completely new function which was the case with

the App.previnstance where the App class, is no longer present in VB.NET. In this case we

had to implement the functionality by creating a new function as described in detail in section

3.4.1.

When all the compile errors were fixed and we were able to compile the project we could

then start to work with the warnings. Some warnings required changes to the code while

others did not require any action at all. One warning which required changes was when the

array lower bound had changed from 1 to 0. If left unchanged this issue eventually causes the

application to crash when the feature concerned is accessed. This issue is described in detail

in section 3.5. The best way to find out which warnings required change is to rigorously test

all the features of the application as described in section 4.1.1. Tests are performed by testing

all the features of the application to ensure there is no abnormal behavior. Further we also

matched some output from the VB.NET version against output from the VB.6 version of the

reptile in order to make sure the functionality remains unchanged.

 47

4.1.4 Test of application version 2 (Checklist: step 5)

After all the upgrade issues had been dealt with, we tested all the features of the project in

order to discover any unresolved issues and that our solutions were working the way we

intended them to. First, we discovered that there had been a number of changes in the design

of the project. Label objects displaying crucial information were sometimes hidden behind

other objects. These problems were easily solved in Visual Studio since it is simply a matter

of changing the design by clicking on the object and dragging it to its correct location.

Further we discovered a problem with the treeview described in section 3.7 which fetches a

product chosen by the user from the database and displays the product and sub products as a

tree. After the upgrade the tree was not displayed correctly. The tree had the main product as

the root and all the sub products lined up on the next level, while what was expected was a

display of the products as a tree with several levels. Since we had a request from Prevas to

change the caching of the tree from a simple string to an xml file we rewrote the function

responsible for presenting the tree and the new xml based function produces a tree with the

right structure.

4.1.5 Test of Application Version 3 (Checklist: steps 6, 7 and 8)

After testing version 2 and making changes to the issues we discovered in version 2 we now

had version 3 of the application which we handed to Prevas for further testing. Since they

originally created the Reptile application they can test features and discover abnormal

behavior which we were unable to detect. When Prevas completed testing of version 3 we

received a list of the following issues:

• Settings were not stored in the windows registry

• Combo boxes not visible

• Right click popup menus not appearing.

The issues with the settings and the right click popup menus were non-trivial, since they were

due to new features in the .NET framework meaning we had to re-implement the functions.

The missing combo boxes were simply a matter of design where they had been hidden behind

other objects.

 48

After the corrections were made to version 3 we now had version 4 of the project which is the

final version and thereby the process is complete.

4.2 Project Overview

There are several ways to reduce the amount of time and work spent on the conversion

process. By using a checklist, planning will be a lot easier and also more efficient. It is also

important to understand what knowledge is required before beginning the conversion. By

using a checklist the process can be seen as an organized process which makes planning and

distribution of resources for the project more efficient.

4.2.1 Knowledge

During the conversion we learned that it is really important to have a good understanding of

the two languages involved in the process. Further it is also important to know which features

the upgrading software is unable to upgrade. This knowledge facilitates the necessary

preparations of the source code before the conversion and thereby reduces the number of

upgrade issues which has to be solved after the upgrade and consequently reduces the time

spent.

4.2.2 Software Tools

There are many different types of software that will make the upgrade more efficient and

reduce the time spent on getting the project running after the upgrade. When upgrading from

VB6 to VB.NET, Visual Studio has a built in Upgrade Wizard which automatically upgrades

the VB6 code into VB.NET. However the Upgrade Wizard does not perform the entire job.

 There are objects such as the App.helpfile constant which the wizard is unable to upgrade

and not always does the upgraded object have the same behavior as its predecessor as in the

case of the dir function explained in section 3.5. This will lead to time which has to be spent

after the upgrade to correct the features which have the wrong behavior or simply were not

upgraded at all. To reduce this time there is software which can be used to detect such issues

before the upgrade making it possible to perform changes in the code before the upgrade and

 49

thereby reduce the time that has to be spent after the upgrade to correct upgrade issues. One

example of such a software tool is the Project Analyzer.

4.2.3 Planning

With the help of a checklist planning the process will also be easier. With planning a

timetable can be made and also certain critical points can be determined. By using the

checklist the person performing the conversion can easily know the next step in the

conversion and make sure that proper preparations are made.

4.2.4 Project Summary

The result of the conversion produced a checklist consisting of 8 steps. The list began with a

pre check of the code to look for features which may produce upgrade issues and thereby

reduce the amount of work required to get the project running after the upgrade. After the pre

check the project is upgraded and all the upgrade issues are dealt with in order to run and test

the project. It is important to test the projects’ features thoroughly in order to discover

abnormal behavior in the application. Once all the issues discovered during testing are dealt

with, the project is handed in to Prevas for further testing and most likely there will be a new

list of issues to deal with. Once these issues are dealt with the conversion process is complete.

With the help of the checklist the conversion process can be seen as an automated process.

There are several factors which affect the result, time and cost of the conversion. Not enough

knowledge of the languages and features of the languages involved can make the conversion

more time consuming than needed.

4.3 Project Evaluation

It is difficult to predict how much time that has to be spent on converting a VB6 application

to VB.NET. The size of the project and the components involved such as Active X or drag

and drop will affect the amount of time spent on getting the project running after the

conversion. Most of the time was spent on dealing with the upgrade issues which were raised

by the Upgrade Wizard. However there are several ways as described in chapter 4 to prepare

the code in advance in order to reduce the number of upgrade issues and thus reduce the

amount of time and effort spent on the conversion.

 50

There are several different ways to upgrade a VB6 project. One way is to simply re-write the

entire application into a .NET language such as C# or VB.NET. However we chose to

upgrade the project into VB.NET since we could use the Upgrade Wizard to perform the

upgrade and VB.NET syntax is more similar to VB6.

4.3.1 What was learned

From this project we learned that the learning curve was higher than we expected. It is not

only about understanding the languages involved in the conversion but also understanding of

the code. Since the code was originally written by Prevas, it was significant to understand the

code and how the different components in the application interact with each other. This

would mean that any other developer performing the conversion written by another developer

could experience the same learning curve.

Depending on the complexity of the application being converted we realized that substantial

changes of the code may be required which increases the risk that changes in one component

may affect other components of the application.

We also learned that for future conversions better preparations of the code before running it

through the upgrade wizard such as, re-writing features which we no know the upgrade

wizard will be unable to convert may reduce the number of upgrade issues which has to be

dealt with and thereby reduce the time spent on the conversion.

4.3.2 Evaluation

Our performance in this project was to the expectation of Prevas Company and to our

satisfaction too. We achieved our goal and accomplished our task by converting the Visual

Basic 6 Reptile application to Visual Basic .NET. The Reptile application is now fully

converted with its original functionality intact.

Having converted the Reptile application, Prevas Company can now benefit from the new

and improved features offered by the .NET framework. Their products can now integrate

easily with other products written in other languages under the .NET environment.

 51

5 Future Conversions

Any successful conversion will be highly dependent on how well the code is structured.

Understanding of the two languages or environment involved is essential as this would ensure

that a programmer or developer is familiar with features of the languages. This would also

reduce the amount of effort and time to carry out the process. In this case better

understanding of object-oriented technology is crucial in understanding the .NET Framework.

In our case we had no substantial knowledge of the two languages and we therefore used the

conversion process as a way to learn. Even though we had some knowledge of object oriented

technology, understanding the language functionality took us more time and effort than we

expected.

The fact that VB.NET is not entirely backward compatible with the other previous Visual

Basic versions like VB6 makes conversion a rather complex issue. Therefore to carry out any

future conversion the following important issues will need to be outlined for consideration in

order to carry out a more successful conversion:

• Strategy or approach

• Preparation which include evaluation and initial assessment of the target

application.

• Identifying and making changes to help the upgrade go smoothly

• Tools used to assist in the process

5.1 Approach

Decision on how the conversion could be performed has to be made. The decision will

determine the approach the conversion process will follow. The upgrade could take three

approaches:

• Partial upgrade

• Complete upgrade

• Complete re-write

 52

5.1.1 Partial Upgrade

In situations where a complete upgrade is not required then the target code can be passed

through the Interoperability services stage by gradually adding VB.NET components into the

existing VB6 application. However, this is a slower path of conversion where upgrade is

performed on various sections of the application as needed.

5.1.2 Complete Upgrade

The motivation to perform an entire application upgrade could be that an application has gone

beyond its original scope and therefore makes sense for conversion to a latest development

platform. Again most developers perform this upgrade because they feel they want to take

full advantage of the advanced functionality offered by the .Net framework. Therefore,

depending on developers or organizational needs this approach could be necessary.

5.1.3 Complete Re-write

When the languages involved have very little in common or the application about to be

upgraded uses a lot of components such as Active X controls and Drag and drop controls

which we already know will cause upgrade issues. In some cases the amount of work

involved to get the project running will exceed the amount of work required to re-write, then

the easiest upgrade approach would be to re-write the application into the new language.

5.2 Preparations

Preparation is the initial stage before any given process. Most experts recommend that

developers perform some manual preparations such as removal of duplicated and unused

code. Moreover, better preparation as we noted may considerably reduce the number of errors

that will require fixing after the upgrade. During preparation some important differences

between VB6 and VB.NET must be understood and this forms a fundamental step for the

process. Understanding the differences between the two languages plays an important role in

understanding modifications required to the code.

 53

5.3 Changes

Several changes should be applied to make the conversion process much more efficient. Data

types such a variant data types in VB6 which accepts any data as input have to be re-written.

Though this construct makes coding easier since no strict type definition is required, there is

no available support in VB.NET instead the variant data type is replaced by object. Therefore

searching VB6 Code for all instances of variant data type and replacing them with an object

data types is essential at this stage.

Late binding should be avoided by identifying variant data types in order to eliminate the

number of unresolved upgrade issues.

Use constants instead of underlying values as described in section 3.4.3. VB6 constants will

convert to the correct value when upgraded to VB.NET, but if actual values are used then the

constant may end up with wrong values. For example, for Boolean values using -1 and 0

instead of True and False will have an adverse effect in VB.NET because inVB.NET True is

1 [7].

5.3.1 Fixing Data Declaration

In VB6 it was possible to reference a variable without first declaring it with a Dim, Private,

or Public declaration. However this feature is no longer possible in VB.NET. Adding proper

type declarations on any undeclared variables and adding Option Explicit statements on every

Dim statement would enable proper conversion of the code. In addition, certain array

declarations and user defined structures should be changed. In VB6 an array can be declared

with any positive integer as its lower bound but in VB.NET all arrays start from index value 0

(zero).

5.3.2 Obsolete Keywords

Certain language elements which are not supported in VB.NET should be removed or

replaced in VB6 application before upgrade. Obsolete keywords such as GoSub, Option

Base, IsMissing, Let, Wend, VarPtr, ObjPtr, StrPtr, DefBool, DefByte, DefInt, DefLng,

DefCur, DefSng, DefDbl, DefDec, DefDate, DefStr, DefObj, and DefVar are no longer

useful in VB.NET.

 54

5.4 Tools

After making the necessary changes in the preparation stage then the next step would be to

find the right tool to assist the conversion process. Microsoft has introduced several resources

to assist in the conversion process. Depending on what is available such as Visual Studio

Upgrade Wizard, these resources would definitely make the process easier. One of the tools

used for this process is an Upgrade Wizard provided by Visual Basic .NET which performs

an automatic upgrade. The Upgrade Tool is started when you open a Visual Basic 6 project or

application in Visual Basic.NET. The Upgrade Tool converts the code but does not change

the Visual Basic 6 project. Instead a new Visual Basic .Net project is created. Most of the

upgrade work is handled by the Upgrade Wizard but there are areas where an upgrade issues

are raised and manual modifications is required to fix the issues.

5.4.1 Migration Cost Estimation Tool

Another example of an available tool is, migration cost estimation tool [27]. This tool is

recommended for:

• Analyzing the code and determining the complexity of the code

• Looking for issues that could make difficult using the Wizard and

By doing so, the developer can easily make a schedule for the process and understand how to

deal with upgrade issues.

5.4.2 Project analyzer and Compatibility Check Tool

Project Analyzer is another tool available for Visual Basic which includes automatic dead

code removal and VB.NET Compatibility Check features for understanding, optimizing and

documenting Visual Basic Source Code. Project Analyzer helps in preparing the existing

VB6 code for VB.NET by checking whether or not an application is upgradable.

Automatic dead code removal helps to remove the pieces of code that are not in use. This

could also reduce the amount of the code that the Upgrade Wizard will have to scan through

[27].

 55

5.5 Conclusions

During this conversion we learned the importance of proper preparations of the code before

the conversion. Proper preparation of the code before conversion can reduce the amount of

work and time spent on the conversion. There are several tools available such as project

analyzer and compatibility check tool which could also assist in code preparation.

We realized also that the Upgrade Wizard assisted a great deal in substantially increasing

automation of the conversion process which indeed reduced the amount of manual

modifications. When choosing which .NET language to upgrade to VB.NET has the

advantage that the Upgrade Wizard can be used.

At the beginning of the assignment we had limited knowledge about the languages involved

and the differences between them, this meant that part of the time had to be spent in learning

and understanding the structures of the code. We learnt that prior knowledge of the languages

involved in the conversion could play an important role especially in handling upgrade issues

such as objects which could not be upgraded and had to be re-implemented.

 56

References

Books references:

1. Bradley L. Jones, Sams Teach Yourself C#, Pub: Sams 2003

2. Conard James , Introducing .NET, Pub: Wrox Press 2001

3. Deitel, Paul J, Visual Basic 6 :How to Program , Pub: Prentice Hall 1998

4. Drayton Peter, C# In a Nutshell , Pub: O'Reilly Media 2002

5. Evjen Bill, Visual Basic.NET Bible, Pub: Wiley2001

6. Kastroulis Angelo, Visual Basic .NET for VB6 Developers, Pub: Peer Information

2002

7. Ed Robinsson, Upgrading Microsoft Visual Basic 6.0 to Microsoft Visual Basic

.NET, Pub: Microsoft Press 2001

8. Smith, Eric A. h Valor Whisler , Hank Marquis, Visual Basic 6 Bible , Pub: Wiley

1998

9. Watkins Damien, Programming in the .NET Environment , Pub: Addison-Wesley

Professional 2002

Web references:

10. Introduction to ActiveX Controls,

http://msdn2.microsoft.com/en-us/library/aa751972.aspx

11. COM (Component Object Model)

http://msdn2.microsoft.com/en-us/library/ms680573.aspx

12. Compiling MSIL to Native Code

http://msdn2.microsoft.com/en-us/library/ht8ecch6.aspx

13. Rapid Application Development

http://www.blueink.biz/RapidApplicationDevelopment.aspx

14. Delphi for .NET

http://www.delphibasics.co.uk/NET.html

15. Visual J#

http://msdn2.microsoft.com/sv-se/vjsharp/default(en-us).aspx

 57

16. Console Applications

http://www.startvbdotNET.com/language/console.aspx

17. What is Visual Basic?

http://visualbasic.about.com/od/applications/a/whatisvb.htm

18. Virtual Machines

http://www.answers.com/topic/virtual-machine?cat=technology

19. Just in Time Compilation(JIT)

http://msdn2.microsoft.com/en-us/library/ht8ecch6.aspx

20. Cursors. default

http://msdn2.microsoft.com/en-us/library/system.windows.forms.cursors.default.aspx

21. Wait Cursor

http://msdn2.microsoft.com/en-us/library/system.windows.forms.cursors.waitcursor.aspx

22. Multidimensional Arrays in Visual Arrays in Visual Basic

http://msdn2.microsoft.com/en-us/library/d2de1t93.aspx

23. OLERequestPendingTimeout Property

http://msdn2.microsoft.com/en-us/library/aa245850(VS.60).aspx

24. TreeNode Class

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.treenode.aspx

25. TreeView Class

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.treeview.aspx

26. Process Class

http://msdn2.microsoft.com/en-us/library/system.diagnostics.process.aspx

27. Migrating from VB6 to VB.NET with Project Analyzer

http://www.aivosto.com/project/vbnet.html

 58

28. OLE container

 http://msdn.microsoft.com/en-us/library/hkfbayab(VS.80).aspx

29. Variant Datatype

http://en.wikipedia.org/wiki/Variant_type

30. App class

 http://msdn.microsoft.com/en- us/library/fc353bw2.aspx

31. Marshalling attributes

http://msdn.microsoft.com/en-us/library/dh1fz21y(VS.71).aspx

32. Prevas Company

http://www.prevas.com/

 59

A Glossary

VB all previous versions of visual basic

VB6 Visual Basic 6.0

VB.NET Visual Basic.NET

IDE Integrated Development Environment

COM Component Object Model

CLR Common Language Runtime

CTS Common Type System

FCL Framework Class Library

CIL Common Intermediate Language

JIT Just in Time Compilation

EWI Error Warning Issue

OLE Object Linking and Embedding

 RAD Rapid application development

 CLS Common Language Specification

 IL Intermediate Language

 API Application programming interface

 DLL Dynamic Linked Libraries

 ODBC Open Database Connectivity

 60

