Definitions

\[G = (V, E) \]

\[V = \text{set of vertices (vertex / node)} \]

\[E = \text{set of edges } (v, w) \quad (v, w \text{ in } V) \]

(v, w) ordered \quad \Rightarrow \text{directed graph (digraph)}

(v, w) non-ordered \quad \Rightarrow \text{undirected graph}

digraph:

w is adjacent to v if there is an edge from v to w

dedge may be (v, w, c) where c is a cost component
(e.g. distance)
Examples
Meaning & Use

- A graph is used to represent arbitrary relationships among data objects

 e.g. undirected graphs
 - communications network
 - transport network (road, rail, air, sea) with costs/distances
 - (travelling salesman problem)

 e.g. directed graphs (digraph)
 - flow of control in computer programs
 - University course planning (dependency graph)
 - state transition diagrams
Other ADTs

linked list

\[\text{linked list} \]

directed acyclic graph (dag) tree

\[\text{directed acyclic graph (dag)} \]

\[\text{tree (dag)} \]
Terminology

PATH: a sequence of vertices \(v_1, v_2, \ldots, v_n \) such that \(v_1 \rightarrow v_2, v_2 \rightarrow v_3, \ldots, v_{n-1} \rightarrow v_n \) are edges.

LENGTH: number of edges in a path
(v denotes a path length 0 from \(v \) to \(v \))

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: simple path of length \(\geq 1 \) that begins (directed graph) and ends at the same vertex.
Graphs & Cycles

- A cycle is a path which begins and ends at the same vertex.
- A graph with no cycles is **acyclic**.
- A directed graph with no cycles is a directed acyclic graph (DAG).

DAG	directed graphs	undirected graphs
![Diagram](image1) | ![Diagram](image2) | ![Diagram](image3)
Undirected Graphs

For cycles in undirected graphs, the edges must be distinct since \((u,v)\) and \((v, u)\) are the same edge.

connected: if there exists a path from every vertex to every other vertex.

non-connected:

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
\text{b} & \text{d} & \\
\text{c} & & \text{d}
\end{array}
\]

\[
\begin{array}{ccc}
\text{a} & \text{b} & \\
\text{b} & & \\
\text{c} & & \text{d}
\end{array}
\]
Directed Graphs

- A connected directed graph is called **strongly connected** i.e. there is a path from every vertex to every other vertex.
- If the digraph is not strongly connected BUT the underlying graph, without distinction to the direction, is connected, then the graph is said to be **weakly connected**.

Strong:

- a → b
- c ← d

Weak:

- a → b
- c → d

Not:

- a → b
- c → d
A graph is **complete** if there is an edge between every pair of vertices.

Complete Graph

A graph is complete if there is an edge between every pair of vertices.

- **12 edges**
 - $n \times (n - 1)$

- **6 edges**
 - $n \times (n - 1) / 2$
Adjacency Matrix

For each edge \((u, v)\) set \(a[u, v] = 1\)

storage => \(\Omega(n^2)\)

read in/
search => \(O(n^2)\)
Adjacency List

- Use a list of nodes where each node points to a list of **adjacent** nodes (better for sparse graphs)

```
  a  b  c  d
  ↓  ↓  ↓  ↓
  b  d  a  d
  ↓  ↓  ↓  ↓
  d  a  b  c
```

\[\text{space} = O(|V| + |E|) \]

(for named vertices - use a hash table)
Operations

- Insert
- Remove
- Find
- Vertex
- Edge
- Navigate
- Is_path
- Is_cycle
- Shortest path
- Spanning forest
- Topological sort
- List operations
Shortest Path 1 **Dijkstra**'s algorithm

Single source shortest path (non-negative costs)
Determines the **shortest path** from a source to every other vertex in the graph where the length of the path is the sum of the costs of the edges

S - set of vertices; shortest distance from source already known each step adds a vertex v whose distance from S is as short as possible – the visited vertices (nodes)

special path: shortest path from the source to v passing through u
array D: length of **shortest special path** to each vertex
C[i,j]: cost of v_i to v_j (no edge ➔ cost is infinite $)
Dijkstra’s algorithm principles

Given a start node \(x \), note the \textit{edge} lengths from \(x \) to the remaining nodes in the graph. Choose the \textit{shortest edge} from \(x \) to a node \(y \). Mark nodes \(x \) and \(y \) as \textit{visited}. \(S = \{x,y\} \)

Check to see if there is a shorter \textit{path} to the remaining (unvisited) nodes, \(\{V-S\} \), in the graph \textit{from} \(x \) \textit{via} \(y \).

If so, update the \textit{path lengths} so far calculated.

Repeat the process until all nodes have been visited.
Dijkstra - Example

\[(a\ b\ 10) \ (a\ d\ 30) \ (a\ e\ 100) \ (b\ c\ 50) \ (c\ e\ 10) \ (d\ c\ 20) \ (d\ e\ 60) \]

Start \(a\) – visited \{a\}, unvisited \{b, c, d, e\}, **shortest path** \((a\ b\ 10)\)

\(\$\) = infinity

Visited \{a, b\}, unvisited \{c, d, e\}

\((a\-b\-c\ 60)\) \((a\-b\-d\ \$)\) \((a\-b\-e\ \$)\)

Shortest **path** \((a\-d\ 30)\) – visited \{a, b, d\}, unvisited \{c, e\}

\((a\-d\-c\ 50)\) \((a\-d\-e\ 90)\)

Shortest **path** \((a\-c\ 50)\) – visited \{a, b, c, d\}, unvisited \{e\}

\((a\-c\-e\ 60)\)

Shortest **path** \((a\-e\ 60)\) – visited \{a, b, c, d, e\}, unvisited \{\}\n
No nodes left! Final answer:-

\[D = [10, 50, 30, 60]\]
Dijkstra - Example

<table>
<thead>
<tr>
<th>Iteration</th>
<th>S</th>
<th>w</th>
<th>D[b]</th>
<th>D[c]</th>
<th>D[d]</th>
<th>D[e]</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>{a}</td>
<td></td>
<td>-</td>
<td>10</td>
<td>§</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>{a,b}</td>
<td>b</td>
<td>10</td>
<td>60</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>{a,b,d}</td>
<td>d</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>{a,b,d,c}</td>
<td>c</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>{a,b,d,c,e}</td>
<td>e</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

See separate notes on a worked example:-
(i) Revision notes (ii) study plan
Dijkstra’s Algorithm

- Graph (G) + Cost Matrix (C)

- NB count the number of edges in the graph and the cost matrix
Dijkstra's Algorithm

Dijkstra (a)
{
 S = {a} // G = (V, E)
 for (i in V-S) D[i] = C[a, i] // initialisation
 while (!is_empty(V-S)) {
 choose w in V-S such that D[w] is a minimum
 S = S + {w}
 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
 }
} // D[i] = distance; C[i,j] = cost matrix; S = {visited nodes}
Dijkstra’s Algorithm

Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) D[i] = C[a, i] -- initialise D (path lengths)
 -- from the start node a
while (!is_empty(V-S)) {
 choose w in V-S such that D[w] is a minimum
 -- unvisited node with shortest path from start_node
 S = S + {w} -- add this node to visited nodes
 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
 -- recalculate paths via w to unvisited nodes
}
}
Dijkstra - Comment

- “greedy” algorithm - **local best solution** is best overall
- choose \(w \) in \(V-S \) such that \(D[w] \) is a minimum (meaning?)
- recall that \(D[i] \) means the **length** of the **shortest path** to each vertex
- note that the algorithm partitions the nodes into **two spaces** \(S \) (initially with the start node) and \(V-S \) (the remaining nodes) **visited / unvisited**
- foreach (\(v \) in \(V-S \)) \(D[v] = \min(D[v], D[w]+C[w,v]) \) (meaning?)
 - \(w \) is the node with the minimum distance from the source (not in \(S \))
 - \(D[v] \) means the **shortest (special) path length** so far calculated
 - \(D[w] \) is the cost (so far) to \(w \) (again a shortest (special) path length)
 - \(C[w,v] \) is the cost from node \(w \) to node \(v \) (**edge cost**)
Dijkstra – principles revisited

- Choose the start node – \(a \) \(S = \{a\} \) \(G = (V, E) \)
- \(S \) represents visited nodes; \(V-S \) represents unvisited nodes
- \(D \) represents the path lengths from \(a \) to the remaining nodes \((V-a) \)
- \(C[x,y] \) represents the cost matrix – the cost of the edge \(x \rightarrow y \)

Algorithm

- Choose the shortest path to an unvisited node (may be an edge)
- Add this node \((w) \) to the set of visited nodes \(S \)
- Calculate an alternative path via \(w \) to all nodes \(v \) in \(\{V-S\} \)
- choose if distance \(D[w]+C[w,v] \) is shorter than \(D[v] \)

\[\text{D}[v] \text{ – previous path length for each } v \text{ in } \{V-S\} \]

\[\text{C}[w,v] \text{ - edge weight} \]

\[\text{path length - D}[w] \]
Dijkstra's Algorithm + Shortest Path Tree

Dijkstra (a)

\{ S = \{a\} \}

\text{for (i in V-S)\{ D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; \}}

\text{while (!is_empty(V-S)) \{}

\text{choose w in V-S such that D[w] is a minimum}

\text{S = S + \{w\}}

\text{foreach (v in V-S) if (D[w]+C[w,v])< D[v] \{}

\text{D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; \}}

\text{\}}
Dijkstra's Algorithm + Shortest Path Tree

Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }
-- initialise D + SPT (E + L)
while (!is_empty(V-S)) {
 choose w in V-S such that D[w] is a minimum
 -- unvisited node with shortest path from start_node
 S = S + {w}
 foreach (v in V-S) if (D[w]+C[w,v])< D[v])
 { D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
 -- recalculate paths and SPT (E + L)
}
}
Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1
Shortest Path 2

- **All pairs shortest path** problem (i.e. Shortest path between any two vertices)
 - apply Dijkstra’s algorithm to each node in turn
 - apply Floyd’s algorithm

- **Floyd**
 - given $G = (V,E)$, non-negative costs $C[v,w]$, for each ordered pair (v,w) find the shortest path
 - note the initial conditions
 - use an array $A[i,j]$ which is initialised to $C[i,j]$, i.e. the initial edge costs
 - if no edge exists $C[i,j] = \infty$ (infinite cost)
 - for n vertices there are n iterations over the array A
 - **Floyd is thus $O(n^3)$**
Floyd’s Algorithm

Floyd ()
{
 for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j]
 for (i in 1..n) A[i, i] = 0 -- initialisation
 for (k in 1..n) for (i in 1..n) for (j in 1..n)
}

A[i,k] A[k,j]

A[i,j]
Floyd - Example

\[A_0[i,j] = \begin{array}{ccc} 0 & 8 & 5 \\ 3 & 0 & \langle \infty \rangle \\ \langle \infty \rangle & 2 & 0 \end{array} \]

\[A_1[i,j] = \begin{array}{ccc} 0 & 8 & 5 \\ 3 & 0 & 8 \\ \langle \infty \rangle & 2 & 0 \end{array} \]

\[A_2[i,j] = \begin{array}{ccc} 0 & 8 & 5 \\ 3 & 0 & 8 \\ 5 & 2 & 0 \end{array} \]

\[A_3[i,j] = \begin{array}{ccc} 0 & 7 & 5 \\ 3 & 0 & 8 \\ 5 & 2 & 0 \end{array} \]

\[\langle \infty \rangle = \text{infinity} \]
Floyd - Comment

- Initialisation is the costs in C (i.e. Initial edge costs) with the diagonal (i.e. \(v \Rightarrow v \)) set to 0

- for each node \((k = 1..n)\) go through the array \((i, j = 1..n)\) and compute costs - i.e. check if there is a cheaper path from node \(i\) to node \(j\) via node \(k\) - if so change \(A[i, j]\)

Transitive Closure & Warshall’s Algorithm

- Determine if a **path** exists from vertex i to vertex j
- \(C[i, j] = 1 \) if an **edge** exists (\(i <> j \)), otherwise = 0
- compute \(A[i, j] \), such that \(A[i, j] = 1 \) if there exists a **path** of length 1 or more from vertex i to vertex j
- A is called the **transitive closure** of the adjacency matrix
- Note that this is a special case of Floyd’s where we are not directly interested in the costs
Warshall’s Algorithm

Warshall ()
{

for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
}

A[i,k] A[k,j]
A[i,j]
Warshall - Example

\[A_0[i,j] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]

\[A_1[i,j] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

\[A_2[i,j] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

\[A_3[i,j] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]
Warshall - Comment

- i.e. there is a path from node \(i\) to node \(j\) **IF** there is a path from node \(i\) to node \(k\) **AND** a path from node \(k\) to node \(j\)
- at various stages in the calculation for \(k, i, j\), the different paths are discovered
 - (1, 2, 2) - \(A[2,2] = A[2,1] \text{ and } A[1,2]\) - i.e. 2 to 1 to 2 => 2 to 2
 - (1, 2, 3) - \(A[2,3] = A[2,1] \text{ and } A[1,3]\) - i.e. 2 to 1 to 3 => 2 to 3
 - (2, 3, 1) - \(A[3,1] = A[3,2] \text{ and } A[2,1]\) - i.e. 3 to 2 to 1 => 3 to 1
 - (2, 3, 3) - \(A[3,3] = A[3,2] \text{ and } A[2,3]\) - i.e. 3 to 2 to 3 => 3 to 3
Summary – directed graphs

- Definitions & implementations
- Algorithms
 - Dijkstra: single node shortest path
 - Dijkstra-SPT: + shortest path tree
 - Floyd: all pairs shortest path
 - Warshall: transitive closure
 - is there a path from a to b?