Digraphs: Depth First Search

Given $G = (V, E)$ and all v in V are marked unvisited, a depth-first search (dfs) (generalisation of a pre-order traversal of tree) is one way of navigating through the graph:

- select one v in V and mark as visited
- select each unvisited vertex w adjacent to v - dfs(w) (recursive!)
- if all vertices marked => search complete
- otherwise select an unmarked node and apply dfs

implementation: adjacency list
DFS: Example

Start: A
A, B, C, D, E, F, G
DFS: Example

Start: A
A \rightarrow B
DFS: Example

Start: A
A → B → C
DFS: Example

Start: A
A → B → C
DFS: Example

Start: A
A → B → C, B → D
DFS: Example

Start: A
A → B → C, B → D
DFS: Example

Start: A
A → B → C, B → D
Start E
DFS: Example

Start: A
A → B → C, B → D

Start: E
E → F
DFS: Example

Start: A
A → B → C, B → D

Start: E
E → F
DFS: Example

Start: A
A → B → C, B → D
Start: E
E → F, E → G
DFS: Example

Start: A
A → B → C, B → D
Start: E
E → F, E → G
in a dfs of a directed graph, certain edges, when visited, lead to unvisited vertices
such edges are called TREE EDGES and form a DEPTH FIRST SPANNING FOREST for the given digraph
Depth First Spanning Forest

- Other edges are
- back edge
 - vertex to an ancestor
- forward edge
 - non-tree edge from a vertex to a proper descendant (in the tree)
- cross edge
 - edge from V_1 to V_2 - neither an ancestor nor descendant
Depth First Spanning Forest

- Nota Bene (NB)
 - all cross edges go from right to left assuming that
 - children added to tree in order visited (l to r)
 - new trees added to forest in left to right order
- vertices can be numbered (dfn) in depth first order
 A B C D E F G
 1 2 3 4 5 6 7
Depth First Spanning Forest

- **All descendants** of v have $dfn \geq dfn(v)$
- **forward edges**
 - low dfn to high dfn
- **back edges**
 - high dfn to low dfn
- **cross edges**
 - high dfn to low dfn
- **back edge** => cycle

- **w is a descendant of v** if and only if

 - $dfn(v) \leq dfn(w) \leq dfn(v) + \text{number of descendants of } v$
Digraphs: Breadth First Search

Given $G = (V, E)$ and all v in V are marked unvisited, a breadth-first search (bfs) is another way of navigating through the graph.

select one v in V and mark as visited; enqueue v in Q

while not is_empty(Q) {
 $x = \text{front}(Q)$; dequeue(Q);
 for each y in adjacent (x) if unvisited (y) {
 mark(y); enqueue y in Q; process (x,y)
 // (e.g. add to tree);
 }
}
BFS: Example

Start: E
Output: E, F, G, B, D, C, A
BFS: Example

Start: E
Q: E
BFS: Example

Start: E
Q: F, G

Diagram: Graph with nodes E0, F1, G1, B2, D2, C3, and edges connecting them. Nodes A, B, C, D, E, F, G are also shown with different colors.
BFS: Example

Start: E
Q: G
BFS: Example

Start: E, F
Q: G, B
BFS: Example

Start: E, F, G
Q: B, D
BFS: Example

Start: E, F, G, B
Q: D
BFS: Example

Start: E, F, G, B
Q: D, C
BFS: Example

Start: E, F, G, B, D
Q: C, A
BFS: Example

Start: E, F, G, B, D, C
Q: A
BFS: Example

Start: E, F, G, B, D, C, A
Q: empty
Breadth First Spanning Forest

in a bfs of a directed graph, certain edges, when visited, lead to unvisited vertices - such edges are called TREE EDGES

and form a BREADTH FIRST SPANNING FOREST for the given digraph

NB only tree & non-tree (cross) edges
Directed Acyclic Graphs (DAGs)

- DAG - digraph with no cycles
- compare: tree, DAG, digraph with cycle

- Tree in-degree = 1 out-degree = 2 (binary)
- DAG in-degree >= 1 out-degree >= 1
DAG: use

- Syntactic structure of arithmetic expressions with common sub-expressions

 e.g. \[((a+b)c + ((a+b)+e)(e+f)) \times (a+b)c \]
DAG: use

- To represent **partial orders**
- A partial order R on a set S is a binary relation such that
 - for all a in S, $a \ R \ a$ is false (irreflexive)
 - for all a, b, c in S, if $a \ R \ b$ and $b \ R \ c$ then $a \ R \ c$ (transitive)
- examples: “less than” ($<$) and proper containment on sets

- $S = \{1, 2, 3\}$
- $P(S)$ - power set of S
 (set of all subsets)

![Diagram of a directed acyclic graph (DAG)]
DAG: use

- To model course prerequisites or dependent tasks

Diagram:

- Year 1: Data & Prog., Discrete Math, PUMA
- Year 2: Op Systems, Data Comm 1, DS&A
- Year 3: Data Comm 2, Prog. Languages
- Year 4: Real time systems, Distributed systems, Compiler construction
Given a DAG of prerequisites for courses, a topological sort can be used to determine \textbf{an order} in which to take the courses.

(TS: DAG \Rightarrow sequence) \hspace{1em} (modified dfs)

prints \textit{reverse} topological order of a DAG from v

\begin{verbatim}

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}
\end{verbatim}
Topological sort: example

start: A

tsort(A) => G K H D E C A B

reverse => B A C E D H K G
Topological Sort example

tsort(v) {
 A⇒ mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A
output:
reverse:
Topological Sort example

tsort(v)
 {
 mark v visited
 A  for each w adjacent to v if w unvisited tsort(w)
 display(v)
 }

path: A  C
output:
reverse:
Topological Sort example

tsort(v) {
 C \rightarrow \text{mark v visited}
 \text{for each w adjacent to v if w unvisited tsort(w)}
 \text{display(v)}
}

path: A \rightarrow C
output: reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A → C → D
output: reverse:
Topological Sort example

tsort(v) {
 D \rightarrow \text{mark } v \text{ visited}
 \text{for each } w \text{ adjacent to } v \text{ if } w \text{ unvisited } tsort(w)
 \text{display}(v)
}

path: A \rightarrow C \rightarrow D
output: A \rightarrow C \rightarrow D
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 D for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A \rightarrow C \rightarrow D \rightarrow G
output: reverse:
Topological Sort example

tsort(v) {
 G \rightarrow mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A \rightarrow C \rightarrow D \rightarrow G
output:
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 G for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A → C → D → G

output: reverse:
Topological Sort example

tsort(v)
 {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 G \rightarrow \text{display(v)}
 }

path: A \rightarrow C \rightarrow D \rightarrow G
output: G
reverse:
Topological Sort example

tsort(v)
{
 mark v visited
 D \rightarrow for each w adjacent to v if w unvisited tsort(w)
 display(v)
}
Topological Sort example

tsort(v) {
 mark v visited
 D for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A \rightarrow C \rightarrow D \rightarrow H
output: G
reverse:
Topological Sort example

tsort(v) {
 H \rightarrow \text{mark v visited}
 \text{for each w adjacent to v if w unvisited tsort(w)}
 \text{display(v)}
}

path: A \rightarrow C \rightarrow D \rightarrow H

output: G

reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A → C → D → H → K
output: G
reverse:
Topological Sort example

tsort(v) {
 K \rightarrow \text{mark } v \text{ visited}
 \quad \text{for each } w \text{ adjacent to } v \text{ if } w \text{ unvisited tsort(w)}
 \quad \text{display(v)}
}

path: A \rightarrow C \rightarrow D \rightarrow H \rightarrow K

output: G

reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A -> C -> D -> H -> K
output: G
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 K \rightarrow \text{display}(v)
}

path: A \rightarrow C \rightarrow D \rightarrow H \rightarrow K

output: G K

reverse:
Topological Sort example

tsort(v) {
 mark v visited
 H \rightarrow for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A \rightarrow C \rightarrow D \rightarrow H
output: G K
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 H ➔ display(v)
}

path: A ➔ C ➔ D ➔ H
output: G K H
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 D for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A ➔ C ➔ D
output: G K H
reverse:
Topological Sort example

tsort(v)
 {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 D \rightarrow display(v)
 }

path: A \rightarrow C \rightarrow D
output: G K H D
reverse: K H D G E C B A
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A → C
output: G K H D
reverse: 03/12/2016 DFR - DSA - Graphs 2
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A ➔ C ➔ E
output: G K H D
reverse:
Topological Sort example

tsort(v) {
 E mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A → C → E
output: G K H D
reverse: K G H D

A C B D E G H K
Topological Sort example

tsort(v)
 {
 mark v visited
 E for each w adjacent to v if w unvisited tsort(w)
 display(v)
 }

path: A \rightarrow C \rightarrow E
output: G K H D
reverse: K H D G E C B A
Topological Sort example

tsort(v)
 {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 E display(v)
 }

path: A C E
output: G K H D E
reverse:
Topological Sort example

tsort(v)
 {
 mark v visited
 C ➔ for each w adjacent to v if w unvisited tsort(w)
 display(v)
 }

path: A ➔ C
output: G K H D E
reverse: K H D E G
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 C ➔ display(v)
}

path: A ➔ C
output: G K H D E C
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 A \rightarrow for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: A
output: G K H D E C
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 A ➔ display(v)
}

path: A
output: G K H D E C A
reverse: 03/12/2016 DFR - DSA - Graphs 2
Topological Sort example

tsort(v)
 {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
 }

path:
output: G K H D E C A
reverse:
Topological Sort example

tsort(v)
 {
 B \to \text{mark } v \text{ visited}
 \quad \text{for each } w \text{ adjacent to } v \text{ if } w \text{ unvisited } tsort(w)
 \quad \text{display}(v)
 }

path: B
output: G K H D E C A
reverse:

03/12/2016
Topological Sort example

tsort(v)
 {
 mark v visited
 B \rightarrow \text{for each } w \text{ adjacent to } v \text{ if } w \text{ unvisited } tsort(w)
 display(v)
 }

path: B
output: G K H D E C A
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 B ➞ display(v)
}

path: B
output: G K H D E C A B
reverse:
Topological Sort example

tsort(v) {
 mark v visited
 for each w adjacent to v if w unvisited tsort(w)
 display(v)
}

path: G K H D E C A B
output: G K H D E C A B
reverse: B A C E D H K G
Detecting Cycles

- Use Warshall
- Use depth first search
Connectivity - & Reachability (Warshall)
Strongly Connected Components (SCCs)

- **Strongly connected component** of a digraph - set of vertices in which there is a path from any one vertex in the set to any other vertex in the set
- partition V into equivalence classes V_i, $1 \leq i \leq r$ such that v and w are equivalent iff there is a path from v to w and from w to v
- let E_i be the set of edges with head and tail in V_i
- the graphs $G_i = (V_i, E_i)$ are called **STRONGLY CONNECTED COMPONENTS** (SCCs) of G
- a **STRONGLY CONNECTED GRAPH** has only one SCC
SCC: example

- a digraph and its strongly connected components

- every vertex of G is in some SCC
- **NOT** every edge of G is in some SCC
- SCC = Strongly Connected Component
In a reduced graph (RG), the vertices are the **strongly connected components** of G.

- edge from vertex C to C’ in RG if there is an edge from some vertex in C to some vertex in C’
- RG is always a DAG since if there were a cycle, all components in the cycle would be one strong component
SCCs: algorithm

1. Perform a dfs and assign a number to each vertex

 \[
 \text{dfs}(v) \{ \text{mark } v \text{ visited} \\
 \text{for each } w \text{ adjacent to } v \text{ if } w \text{ unvisited } \text{dfs}(w) \\
 \text{number } v \\
 \}
 \]

2. construct digraph \(G_r \) by reversing every edge in \(G \)

3. perform a dfs on \(G_r \) starting at highest numbered vertex
 (repeat on next highest if all vertices not reached)

4. each tree in resulting spanning forest is an SCC of \(G \)
SCCs: example

Graph

- a -> b
- b -> c
- c -> d
- d -> a

SCCs

- a4 -> b3
- b3 -> c2
- c2 -> d1

Graph

- a4 -> b3
- b3 -> c2
- c2 -> d1

df spanning forest for G_r

dfs(v) {
mark v visited
for each w adjacent to v if w unvisited dfs(w)
number v
}
Graphs: terminology

- \(G = (V,E) \quad V = \) set of vertices, \(E = \) set of edges \((v,w)\)
- \((v,w)\) ordered \(= \) digraph (directed graph)
- \((v,w)\) non-ordered \(= \) undirected graph
- digraph: \(w \) is adjacent to \(v \) if there is an edge from \(v \) to \(w \)
- DAG: directed acyclic graph
- path: sequence of vertices \(v_1..v_n \) where \((v_1,v_2)\)...\((v_{n-1},v_n)\) are edges
- path length: number of edges in a path
- simple path: all vertices are distinct (except possibly the first and last)
- simple cycle: simple path, length \(\geq 1 \), begin/end on same vertex
Graphs: terminology

- **Strongly Connected Component**: set of vertices in which there is a path from any vertex in the set to any other vertex in the set.
- **Reduced Graph**: vertices are strongly connected components of G.
- **Strongly Connected Digraph**: a path from every vertex to every other vertex.
- **Complete graph**: if there is an edge between every pair of vertices.
- **Implementation**: adjacency matrix or adjacency list.
Graphs: algorithms

- **Dijkstra**: single source shortest path
- **Floyd**: all pairs shortest path
- **Warshall**: transitive closure (determines if a path exists from v to w)
- **Depth First Search**:
 - used to derive the depth first spanning forest for the graph
 - used in cycle detection
 - used to derive the strong components
- **Breadth First Search**:
 - used to derive the breadth first spanning forest for the graph
- **Topological Sort**: DAG => sequence